Power is now a first-order design constraint in large-scale parallel computing. Used carefully, dynamic voltage scaling can execute parts of a program at a slower CPU speed to achieve energy savings with a relatively small (possibly zero) time delay. However, the problem of when to change frequencies in order to optimize energy savings is NP-complete, which has led to many heuristic energysaving algorithms.To determine how closely these algorithms approach optimal savings, we developed a system that determines a bound on the energy savings for an application. Our system uses a linear programming solver that takes as inputs the application communication trace and the cluster power characteristics and then outputs a schedule that realizes this bound. We apply our system to three scientific programs, two of which exhibit load imbalance-particle simulation and UMT2K. Results from our bounding technique show particle simulation is more amenable to energy savings than UMT2K.
We present a parallel implementation of Lagrangian relaxation for solving stochastic unit commitment subject to uncertainty in renewable power supply and generator and transmission line failures. We describe a scenario selection algorithm inspired by importance sampling in order to formulate the stochastic unit commitment problem and validate its performance by comparing it to a stochastic formulation with a very large number of scenarios, that we are able to solve through parallelization. We examine the impact of narrowing the duality gap on the performance of stochastic unit commitment and compare it to the impact of increasing the number of scenarios in the model. We report results on the running time of the model and discuss the applicability of the method in an operational setting.Index Terms-Lagrangian relaxation, parallel computing, scenario selection, stochastic optimization, unit commitment.
Abstract-Dynamic Voltage Frequency Scaling (DVFS) has been the tool of choice for balancing power and performance in high-performance computing (HPC). With the introduction of Intel's Sandy Bridge family of processors, researchers now have a far more attractive option: user-specified, dynamic, hardware-enforced processor power bounds. In this paper we provide a first look at this technology in the HPC environment and detail both the opportunities and potential pitfalls of using this technique to control processor power.As part of this evaluation we measure power and performance for single-processor instances of several of the NAS Parallel Benchmarks. Additionally, we focus on the behavior of a single benchmark, MG, under several different power bounds. We quantify the well-known manufacturing variation in processor power efficiency and show that, in the absence of a power bound, this variation has no correlation to performance. We then show that execution under a power bound translates this variation in efficiency into variation in performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.