The link between the cognitive deficit associated with Alzheimer type dementia and the loss of cholinergic function in the disease provides a basis for examining muscarinic agonists as potential therapeutic agents. This paper describes the design and synthesis of novel azabicyclic methyl esters as ligands for the muscarinic receptor. Replacement of the methyl ester by a 3-methyl-1,2,4-oxadiazole ring produces potent metabolically more stable muscarinic agonists capable of penetrating the central nervous system. These compounds generally show improved affinity relative to the corresponding methyl esters. 3-Methyl-1,2,4-oxadiazole 7b has an affinity 4 times that of acetylcholine. Receptor affinity is discussed in relation to the size and geometry of the azabicyclic ring and the electronic properties of the heteroaromatic ring.
The synthesis of 15 methyl or unsubstituted 1,2,3-triazoles, 1,2,4-triazoles, and tetrazoles additionally substituted with a 1-azabicyclo[2.2.2]octan-3-yl group is described. The potency and efficacy of these compounds as muscarinic ligands were determined in radioligand binding assays using [3H]oxotremorine and [3H]quinuclidinyl benzilate. Potency and efficacy were found in compounds in which the azole moiety was attached to the azabicyclic ring either through a carbon atom or a nitrogen atom. Electrostatic potential maps of both the C-linked and the novel N-linked series of compounds were calculated. A relationship between position and depth of the electrostatic minima relative to the azabicyclic ring and the potency and efficacy of the compounds was determined.
The effect of variation of the 1-azabicyclic substituent on the novel 1,2,3-triazol-4-yl-, 1,2,4-triazol-1-yl, tetrazol-5-yl-, and tetrazol-2-yl-based muscarinic receptor ligands has been studied, and the exo-azabicyclic[2.2.1]hept-3-yl substituent was found to give the most potent and efficacious compounds. In addition, variation of the second substituent on 1,2,4-triazol-1-yl- and tetrazol-2-yl-based muscarinic receptor ligands has yielded a series of novel compounds with high potencies and efficacies, ranging from full agonists to antagonists. Small lipophilic electron withdrawing substituents give potent but low efficacy compounds, while small polar electron donating substituents give potent and efficacious compounds. The activity of these compounds is described in terms of a model of the receptor involving lipophilic and hydrogen bonding interactions. These compounds provide muscarinic ligands with high potency and a range of efficacies suitable for testing as candidate drugs in the treatment of Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.