Transcript-specific translational control is generally directed by binding of trans-acting proteins to structural elements in the untranslated region (UTR) of the target mRNA. Here, we elucidate a translational silencing mechanism involving regulated release of an integral ribosomal protein and subsequent binding to its target mRNA. Human ribosomal protein L13a was identified as a candidate interferon-Gamma-Activated Inhibitor of Translation (GAIT) of ceruloplasmin (Cp) mRNA by a genetic screen for Cp 3'-UTR binding proteins. In vitro activity of L13a was shown by inhibition of target mRNA translation by recombinant protein. In response to interferon-gamma in vivo, the entire cellular pool of L13a was phosphorylated and released from the 60S ribosomal subunit. Released L13a specifically bound the 3'-UTR GAIT element of Cp mRNA and silenced translation. We propose a model in which the ribosome functions not only as a protein synthesis machine, but also as a depot for regulatory proteins that modulate translation.
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.
A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1␣ and HIF-1 binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.