Fish faced with stressful stimuli launch an endocrine stress response through activation of the hypothalamic-pituitary-interrenal (HPI-) axis to release cortisol into the blood. Scientifically validated biomarkers to capture systemic cortisol exposure over longer periods of time are of utmost importance to assess chronic stress in governmental, wildlife, aquaculture and scientific settings. Here we demonstrate that cortisol in scales of common carp (Cyprinus carpio L.) is the long-sought biomarker for chronic stress. Undisturbed (CTR) and daily stressed (STRESS) carp were compared. Dexamethasone (DEX) or cortisol (CORT) fed fish served as negative and positive controls, respectively. Scale cortisol was quantified with a validated ultra-performance liquid chromatography tandem mass spectrometry method. An increase in scale cortisol content was found in STRESS and CORT but not in CTR and DEX fish. Scale cortisol content reflects its accumulation in a stressor and time dependent manner and validates the scale cortisol content as biomarker for chronic stress. Plasma analyses confirmed that (i) CTR, DEX and CORT treatments were effective, (ii) plasma cortisol of STRESS fish showed no signs of chronic HPI-axis activation, and (iii) plasma cortisol is a poor predictor for chronic stress. The expression of HPI key genes crf, pomc, and star were up-regulated in STRESS fish in the absence of a plasma cortisol response, as was the target gene of cortisol encoding subunit α1 of the Na+/K+-ATPase in gills. When lost, scales of fish regenerate fast. Regenerated scales corroborate our findings, offering (i) unsurpassed time resolution for cortisol incorporation and as such for stressful events, and (ii) the possibility to investigate stress in a well defined and controlled environment and time frame creating novel opportunities for bone physiological research. We conclude that the cortisol content in ontogenetic and regenerated scales is an innovative biomarker for chronic stress offering ample applications in science and industry.
Aviary systems for laying hens offer space and opportunities to perform natural behaviors. However, hen welfare can be impaired due to increased risk for keel bone and foot pad disorders in those systems. This cross-sectional study (N = 47 flocks) aimed to assess prevalences of keel bone and foot pad disorders in laying hens housed in aviaries in Belgium to identify risk factors for these disorders and their relation to egg production. Information on housing characteristics and egg production were obtained through questionnaire-based interviews, farm records, and measurements in the henhouse. Keel bone (wounds, hematomas, fractures, deviations) and foot pad disorders (dermatitis, hyperkeratosis) were assessed in 50 randomly selected 60-week-old laying hens per flock. A linear model with stepwise selection procedure was used to investigate associations between risk factors, production parameters, and the keel bone and foot pad disorders. The flock mean prevalences were: hematomas 41.2%, wounds 17.6%, fractures 82.5%, deviations 58.9%, hyperkeratosis 42.0%, dermatitis 27.6%, and bumble foot 1.2%. Identified risk factors for keel bone disorders were aviary type (row vs. portal), tier flooring material (wire mesh vs. plastic slats), corridor width, nest box perch, and hybrid. Identified risk factors for foot pad disorders were aviary type (row vs. portal), free-range, and hybrid. Percentage of second-quality eggs was negatively associated with keel bone deviations (P = 0.029) at the flock level. Keel bone and foot pad disorders were alarmingly high in aviary housing. The identification of various risk factors suggests improvements to aviary systems may lead to better welfare of laying hens.
Under the “high survival” exemption of the European landing obligation or discard ban, monitoring vitality and survival of European flatfish becomes relevant to a discard-intensive beam trawl fishery. The reflex action mortality predictor (RAMP) method may be useful in this context. It involves scoring for the presence or absence of natural animal reflexes to generate an impairment score which is then correlated with post-release or discard mortality. In our first experiment, we determined suitable candidate reflexes for acclimated, laboratory-held European plaice (Pleuronectes platessa) and common sole (Solea solea). In a second experiment, we quantified reflex impairment of commercially trawled-and-handled plaice and sole in response to commercial fishing stressors. In a third experiment, we tested whether a combined reflex impairment and injury (vitality) score of plaice was correlated with delayed post-release mortality to establish RAMP. Five-hundred fourteen trawled-and-discarded plaice and 176 sole were assessed for experimentally confirmed reflexes such as righting, evasion, stabilise, and tail grab, among others. Of these fish, 316 plaice were monitored for at least 14 d in captivity, alongside 60 control plaice. All control fish survived, together with an average of 50% (±29 SD) plaice after being trawled from conventional, 60 min trawls and sorted on-board a coastal beam trawler. Stressors such as trawl duration, wave height, air, and seawater temperature were not as relevant as a vitality score and total length in predicting post-release survival probability. In the second experiment where survival was not assessed, reflex impairment of plaice became more frequent with prolonged air exposure. For sole, a researcher handling-and-reflex scoring bias rather than a fishing stressor may have confounded results. Scoring a larger number of individuals for injuries and reflexes from a representative selection of trawls and trips may allow for a fleet-scale discard survival estimate to facilitate implementation of the discard ban.
Non-cage systems provide laying hens with considerable space allowance, perches and access to litter, thereby offering opportunities for natural species-specific behaviors. Conversely, these typical characteristics of non-cage systems also increase the risk of keel bone and foot pad disorders. The aim of this study was twofold: 1) to investigate if providing ramps between perches (housing factor) reduces keel bone and foot pad disorders and 2) to test for genetic predisposition by comparing 2 different layer hybrids. In a 2 × 2 design, 16 pens were equipped either with or without ramps between perches and nest boxes (8 pens/treatment), and housed with either 25 ISA Brown or Dekalb White birds per pen (in total 200 birds/hybrid). Keel bone injuries and foot health were repeatedly measured via palpation and visual assessment between 17 and 52 wk of age and daily egg production was recorded. The relationships between the dependent response variables (keel bone and footpad disorders, egg production) and independent factors (age, ramps, hybrid) were analyzed using generalized linear mixed models and corrected for repeated measures. Ramps reduced keel bone fractures (F = 45.80, P < 0.001), foot pad hyperkeratosis (F = 10.40, P = 0.001), foot pad dermatitis (F = 20.48, P < 0.001) and bumble foot (F = 8.52, P < 0.001) compared to pens without ramps. ISA Brown birds sustained more keel bone fractures (F = 33.26, P < 0.001), had more foot pad hyperkeratosis (F = 44.69, P < 0.001) and laid more floor eggs (F = 438.80, P < 0.001), but had fewer keel bone deviations (F = 6.73, P < 0.001), fewer cases of foot pad dermatitis (F = 19.84, P < 0.001) and no bumble foot as compared to Dekalb White birds. Age, housing and hybrid showed several interaction effects. Providing ramps proved to be very effective in both reducing keel bone and foot pad problems in non-cage systems. Keel bone and foot pad disorders are related to genetic predisposition. These results indicate that adaptation of the housing systems and hybrid selection may be effective measures in improving laying hen welfare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.