Electrospinning (ES) of polymer solutions generates non-woven webs of nanofibres. The fibre diameter ranges between 10 nm and 1 μm depending on the operating conditions. Surface functionalisation can be performed by the use of suitable additives. Detailed characterisation of the molecular composition at the fibre surface is a key issue. Biodegradable nanowebs with potential antibacterial activity have been prepared by ES of solutions containing polycaprolactone (PCL) and a functionalising additive with PCL segments and hexyldimethylammonium groups (PCLhexaq). Static secondary ion mass spectrometry with Bi(3)(+) projectiles has been applied to individual nanofibres. The positive ion mass spectra contain several signals with high structural specificity allowing the presence of PCLhexaq to be traced back in spite of its low concentration (0.16-1.4% w/w relative to PCL) and its structural similarity to the PCL fibre matrix. Imaging of structural ions visualises the homogeneous distribution of PCLhexaq over the fibre surface. Quantifying the surface concentration of PCLhexaq relative to that of PCL reveals electric field-driven surface enrichment of the additive during ES. Finally, nanofibres subjected to leaching in water for up to 72 h have been analysed. The PCLhexaq surface concentration decreases almost linearly with time at a rate of 0.6% h(-1).
The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.
Time-of-Flight (TOF) static secondary ion mass spectrometry (S-SIMS) was used to gain molecular information on the surface modifications introduced by plasma treatment of polypropylene (PP) films. A procedure using slotted electron microscopy grids was developed to deal with the charge build-up of samples with a thickness of about 30 mm. The surface composition was studied as a function of the plasma treatment time. A comparison of the mass spectra from untreated and treated PP showed significant differences of signal intensities of ions that could be specifically related to the presence of oxygen-containing species. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.