Noninteracting insulating electronic states of matter can be classified according to their symmetries in terms of topological invariants which can be related to effective surface theories. These effective surface theories are in turn topologically protected against the effects of disorder. Topological crystalline insulators are, on the other hand, trivial in the sense of the above classification but still possess surface modes. In this work we consider an extension of the Bernevig-Hughes-Zhang model that describes a point group insulator. We explicitly show that the surface properties of this state can be as robust as in topologically nontrivial insulators, but only if the Sz-component of the spin is conserved. However, in the presence of Rashba spin-orbit coupling this protection vanishes and the surface states localize, even if the crystalline symmetries are intact on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.