Reinforcement learning is an appealing approach for adaptive, fault-tolerant flight control, but is generally plagued by its need for accurate system models and lengthy offline training phases. The novel Incremental Dual Heuristic Programming (IDHP) method removes these dependencies by using an online-identified local system model. A recent implementation has shown to be capable of reliably learning near-optimal control policies for a fixed-wing aircraft in cruise by using outer loop PID and inner-loop IDHP rate controllers. However, fixedwing aircraft are inherently stable, enabling a trade-off between learning speed and learning stability which is not trivially extended to a physically unstable system. This paper presents an implementation of IDHP for control of a non-linear, six-degree-of-freedom simulation of an MBB Bo-105 helicopter. The proposed system uses two separate IDHP controllers for direct pitch angle and altitude control combined with outer loop and lateral PID controllers. After a short online training phase, the agent is shown to be able to fly a modified ADS-33 acceleration-deceleration manoeuvre as well as a one-engine-inoperative continued landing with high success rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.