Microbial cycling of volatile organic sulfur compounds (VOSCs), especially dimethyl sulfide (DMS) and methanethiol (MT), is intensively studied because these compounds play an important role in the processes of global warming, acid precipitation, and the global sulfur cycle. VOSC concentrations in freshwater sediments are low due to the balance between the formation and degradation of these compounds. These reactions occur for the greater part at the oxic/anoxic interphase of sediment and water column. In contrast to marine ecosystems, where dimethylsulfoniopropionate is the main precursor of MT and DMS, in freshwater ecosystems, VOSCs are formed mainly by methylation of sulfide and to a lesser extent from the degradation of S-containing amino acids. One of the major routes for DMS and MT formation through sulfide methylation is anaerobic O-demethylation of methoxylated aromatic compounds. Inhibition studies have revealed that the major part of the endogenously produced MT and DMS is degraded anaerobically by methanogens. The major bacterial groups involved in formation and consumption of VOSCs are described.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 mol/dm 3 day ؊1 ) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na ؉ ), using H 2 or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 10 8 cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.Soda lakes are extreme environments with pH values up to 11 and salt concentrations up to saturation. These high pH values are maintained due to the high buffering capacity of sodium carbonate/bicarbonate, which are among the major anions in solution. The salinity can vary from 5 to 30 g/liter for hyposaline lakes to up to 500 g/liter for hypersaline lakes. Despite these extreme conditions, soda lakes are highly productive and harbor diverse microbial communities (6,11,25,35) responsible for the element cycling.The sulfur cycle, driven by haloalkaliphilic sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB), is one of the most active element cycles in soda lakes. SOB are represented by members of the class Gammaproteobacteria belonging to the genera Ectothiorodospira, Thioalkalivibrio, Thioalkalimicrobium, and Thioalkalispira. Bacteria belonging to the first genus are phototrophic sulfur purple bacteria, while the other three genera are obligate chemolithoautotrophs (30), utilizing various reduced inorganic sulfur compounds as electron donors. Members of the Ectothiorodospira and Thioalkalivibrio genera are particularly remarkable in their potential to grow in saturated alkaline brines.Although more than 100 SOB strains have been isolated from soda lakes (30), so far only four species of SRB, i.e., Desulfonatronovibrio hydrogenovorans (37), Desulfonatronum lacustre (22), Desulfonatronum thiodismutans (23), and Desulfonatronum cooperativum (38) have been isolated, and they are all low-salt-tolerant alkaliphiles. However, although Desulfonatronovibrio hydrogenovorans is a low-salt organism, it was isolated from Lake Magadi, a hypersalin...
Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth’s surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1–15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.
A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage of microbially induced calcium carbonate precipitation (MICP) over cement-based sealants is that the solutions used to promote MICP are aqueous. MICP solutions have low viscosities compared to cement, facilitating fluid transport into the formation. In this study, MICP was promoted in a fractured sandstone layer within the Fayette Sandstone Formation 340.8 m below ground surface using conventional oil field subsurface fluid delivery technologies (packer and bailer). After 24 urea/calcium solution and 6 microbial (Sporosarcina pasteurii) suspension injections, the injectivity was decreased (flow rate decreased from 1.9 to 0.47 L/min) and a reduction in the in-well pressure falloff (>30% before and 7% after treatment) was observed. In addition, during refracturing an increase in the fracture extension pressure was measured as compared to before MICP treatment. This study suggests MICP is a promising tool for sealing subsurface fractures in the near wellbore environment.
Summary 1.A prerequisite for the restoration of desiccated bog remnants is rewetting the peat surface. Frequently in Europe, extensive areas are flooded in order to maximize water retention, and growth of peat mosses is often observed in the shallow zones. In deeper waters, regeneration appears to depend on whether residual peat will become buoyant and form floating rafts. 2. In order to study the initial stages of peat bog regeneration, conditions required for peat buoyancy were studied on peat monoliths collected from three cut-over bog remnants in the Netherlands. The effects of different peat quality and water chemistry on buoyancy of the monoliths, as well as growth of Sphagnum cuspidatum and nutrient availability, were followed in a glasshouse experiment. 3. Both groundwater and peat quality affected the buoyancy of the monoliths and the growth of S. cuspidatum. When groundwater containing bicarbonate (1 mmol l −1 HCO 3 -, pH 6·0) was applied, the pH of peat monoliths increased from c. 3·5 to c. 4·5 due to acid buffering. As a result, two of the peat types became more buoyant and the concentration, production and emissions of methane (CH 4 ) increased. It was concluded that the increase in CH 4 production, induced by the increased pH, was responsible for the buoyancy. ), pH was further increased to approximately pH 5·0 due to alkalinity generated by the SO 4 2-reduction process. CH 4 production, however, decreased because of interference from the SO 4 2-, as confirmed in additional incubation experiments. Phosphate concentrations, however, greatly increased in the HCO 3 -/SO 4 2-addition treatment due to the interaction between sulphide and iron phosphate precipitates. 5. In one of the peat types, treatments did not influence CH 4 production and buoyancy, most probably because of its low decomposability. The chemical characteristics of the peat, notably the concentrations of lignin and soluble phenolics as well as C:N, C:P and C:K ratios, were all higher than in the other two peat types. 6. The increase of S. cuspidatum biomass during the experiment appeared to be strongly related to the N:P ratios of the capitula, which differed considerably among the three peat types. 7. We conclude that when bog remnants are inundated the prospects for bog regeneration are largely determined by peat quality and water chemistry. Peat mats with low concentration of lignin and phenolics and low C:N ratios are most likely to become buoyant in water with a higher pH, so providing suitable environments for Sphagnum species. When peat quality is inadequate, either shallow inundation or the addition of suitable peat from elsewhere is indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.