In the condition monitoring of bearings using acoustic emission (AE), the restriction to solely instrument one of the two rings is generally considered a limitation for detecting signals originating from defects on the opposing non-instrumented ring or its interface with the rollers due to the signal energy loss. This paper presents an approach to evaluate transmission in low-speed roller bearings for application in passive ultrasound monitoring. An analytical framework to describe the propagation and transmission of ultrasonic waves through the geometry and interfaces of a bearing is presented. This framework has been used to evaluate the transmission of simulated damage signals in an experiment with a static bearing. The results suggest that low- to mid-frequency signals (<200 kHz), when passing through the rollers and their interfaces from one raceway to the other, can retain enough energy to be potentially detected. An average transmission loss in the range of 10–15 dB per interface was experimentally observed.
This study presents an approach for the detection of evolving degradation in large-scale low-speed roller bearings by clustering of Acoustic Emission (AE) events, and its application to experimental degradation data. To acquire the latter, a purpose-built linear bearing, representative of a segment of a turret bearing, has been instrumented with multiple piezoelectric AE transducers in the frequency range between 40-580 kHz. Clustering based on crosscorrelation has identified a number of significant clusters that are linked to the observed damage. The results suggest that condition monitoring based on AE waveform similarity clustering is suitable for detection and identification of degradation in a large-scale roller bearing.
This article presents an approach to identify naturally developed damage in low-speed bearings using waveform-similarity-based clustering of acoustic emissions (AEs) under fatigue loading. The approach is motivated by the notation that each recorded AE signal from a particular damage is defined by the convolution of the source signal, transfer function of the propagation path and transfer function of the utilised sensor, and may thusly be used to identify consistent AE sources, for example due to crack growth. A sequential clustering procedure is proposed, that is based on waveform cross-correlation. The supporting theoretical background of waveform similarity, rooted in an analytical formulation of waveform propagation and transmission in complex structures, is discussed. The presented methodology is evaluated through application to AE data obtained in a low-speed run-to-failure experiment utilising a densely instrumented purpose-built linear bearing segment. The implemented sensor system comprises arrays of three types of AE transducers, that is relatively low - (40–100 kHz), mid - (95–180 kHz) and high-frequency (180–580 kHz), that are situated on both the raceways and supporting substructures of either side of the bearing. Over the course of 225,000 cycles of extension and retraction, wear has been developed. A total of about ∼2,300,000 AE signals have been recorded. Analysis of the recorded data suggests the rate of degradation increases from around 70,000 cycles onwards. Highly consistent structures of clusters indicative of a localised defect in the raceway have been identified from around 170,000 cycles onwards. These clusters are characterised by hit-rates in the range of 1–2 hits per cycle and an average similarity of 93%, they comprise about half the AE activity for the periods they have been identified for. These results highlight that the proposed cross-correlation-based clustering of AE waveforms and identification of multi-channel formations in said clusters compose a suitable methodology for assessment of damage in low-speed roller bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.