A humid tropical forest disturbance alert using Sentinel-1 radar data is presented for the Congo Basin. Radar satellite signals can penetrate through clouds, allowing Sentinel-1 to provide gap-free observations for the tropics consistently every 6–12 days at 10 m spatial scale. In the densely cloud covered Congo Basin, this represents a major advantage for the rapid detection of small-scale forest disturbances such as subsistence agriculture and selective logging. Alerts were detected with latest available Sentinel-1 images and results are presented from January 2019 to July 2020. We mapped 4 million disturbance events during this period, totalling 1.4 million ha with nearly 80% of events smaller than 0.5 ha. Monthly distribution of alert totals varied widely across the Congo Basin countries and can be linked to regional differences in wet and dry season cycles, with more forest disturbances in the dry season. Results indicated high user’s and producer’s accuracies and the rapid confirmation of alerts within a few weeks. Our disturbance alerts provide confident detection of events larger than or equal to 0.2 ha but do not include smaller events, which suggests that disturbance rates in the Congo Basin are even higher than presented in this study. The new alert product can help to better study the forest dynamics in the Congo Basin with improved spatial and temporal detail and near real-time detections, and highlights the value of dense Sentinel-1 time series data for large-area tropical forest monitoring. The research contributes to the Global Forest Watch initiative in providing timely and accurate information to support a wide range of stakeholders in sustainable forest management and law enforcement. The alerts are available via the https://www.globalforestwatch.org and http://radd-alert.wur.nl.
Sentinel-1 satellites provide temporally dense and high spatial resolution synthetic aperture radar (SAR) imagery. The open data policy and global coverage of Sentinel-1 make it a valuable data source for a wide range of SAR-based applications. In this regard, the Google Earth Engine is a key platform for large area analysis with preprocessed Sentinel-1 backscatter images available within a few days after acquisition. To preserve the information content and user freedom, some preprocessing steps (e.g., speckle filtering) are not applied on the ingested Sentinel-1 imagery as they can vary by application. In this technical note, we present a framework for preparing Sentinel-1 SAR backscatter Analysis-Ready-Data in the Google Earth Engine that combines existing and new Google Earth Engine implementations for additional border noise correction, speckle filtering and radiometric terrain normalization. The proposed framework can be used to generate Sentinel-1 Analysis-Ready-Data suitable for a wide range of land and inland water applications. The Analysis Ready Data preparation framework is implemented in the Google Earth Engine JavaScript and Python APIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.