We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes n and number of regressors p in the 100,000s, that is two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe new phase transition phenomena. Contrary to traditional complexity theory which suggests that the difficulty of a problem increases with problem size, the sparse regression problem has the property that as the number of samples n increases the problem becomes easier in that the solution recovers 100% of the true signal, and our approach solves the problem extremely fast (in fact faster than Lasso), while for small number of samples n, our approach takes a larger amount of time to solve the problem, but importantly the optimal solution provides a statistically more relevant regressor. We argue that our exact sparse regression approach presents a superior alternative over heuristic methods available at present.
We investigate the control of constrained stochastic linear systems when faced with only limited information regarding the disturbance process, i.e. when only the first two moments of the disturbance distribution are known. We consider two types of distributionally robust constraints. The constraints of the first type are required to hold with a given probability for all disturbance distributions sharing the known moments. These constraints are commonly referred to as distributionally robust chance constraints with second-order moment specifications. In the second case, we impose conditional value-at-risk (CVaR) constraints to bound the expected constraint violation for all disturbance distributions consistent with the given moment information. Such constraints are referred to as distributionally robust CVaR constraints with second-order moment specifications. We argue that the design of linear controllers for systems with such constraints is both computationally tractable and practically meaningful for both finite and infinite horizon problems. The proposed methods are illustrated for a wind turbine blade control design case study where flexibility issues play an important role, and for which distributionally robust constraints constitute sensible design objectives.
We study stochastic programs where the decision maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, that is, a predictor, and an optimizer of the estimated cost function that serves as a near-optimal candidate decision, that is, a prescriptor. As functions of the data, predictors and prescriptors constitute statistical estimators. We propose a meta-optimization problem to find the least conservative predictors and prescriptors subject to constraints on their out-of-sample disappointment. The out-of-sample disappointment quantifies the probability that the actual expected cost of the candidate decision under the unknown true distribution exceeds its predicted cost. Leveraging tools from large deviations theory, we prove that this meta-optimization problem admits a unique solution: The best predictor-prescriptor-pair is obtained by solving a distributionally robust optimization problem over all distributions within a given relative entropy distance from the empirical distribution of the data. This paper was accepted by Chung Piaw Teo, optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.