Recently, coupled musculoskeletal-finite element modelling approaches have emerged as a way to investigate femoral neck loading during various daily activities. Combining personalised gait data with finite element models will not only allow us to study changes in motion/movement, but also their effects on critical internal structures, such as the femur. However, previous studies have been hampered by the small sample size and the lack of fully personalised data in order to construct the coupled model. Therefore, the aim of this study was to build a pipeline for a fully personalised multiscale (body-organ level) model to investigate the strain levels at the femoral neck during a normal gait cycle. Five postmenopausal women were included in this study. The CT and MRI scans of the lower limb, and gait data were collected for all participants. Muscle forces derived from the body level musculoskeletal models were used as boundary constraints on the finite element femur models. Principal strains were estimated at the femoral neck region during a full gait cycle. Considerable variation was found in the predicted peak strain among individuals with mean peak first principal strain of 0.24% ± 0.11% and mean third principal strain of -0.29% ± 0.24%. For four individuals, two overall peaks of the maximum strains were found to occur when both feet were in contact with the floor, while one individual had one peak at the toe-off phase. Both the joint contact forces and the muscular forces were found to substantially influence the loading at the femoral neck. A higher correlation was found between the predicted peak strains and the gluteus medius (R2 ranged between 0.95 and 0.99) than the hip joint contact forces (R2 ranged between 0.63 and 0.96). Therefore, the current findings suggest that personal variations are substantial, and hence it is important to consider multiple subjects before deriving general conclusions for a target population.
Accurate predictions of joint contact forces through computer simulation of musculoskeletal dynamics can provide insight, in a non-invasive manner, into the joint loads of patients with osteoarthritis and healthy controls. The current approach to assume optimal control, in terms of metabolic energy expenditure, remains a major limitation of the prediction of muscle activation patterns that determine joint contact forces. Stochastically optimal muscle control, in the form of a stochastic component superimposed to the optimal control, could potentially explain the inter-trial variability as observed in measured knee contact forces during level walking. A probabilistic approach was used to predict sets of possible muscle activation patterns within a 5 and 10% limit from the optimal muscle activation pattern. The knee contact forces determined by both the optimal and stochastically optimal muscle activation patterns were compared to the corresponding knee contact force patterns measured by an instrumented implant. The range of muscle control patterns captured the inter-trial variability of knee contact forces for most of the gait cycle, suggesting that the probabilistic approach used here is representative of a stochastically optimal control that accounts for co-contraction, whereas during some time intervals a more explicit representation of the motor control strategy is required. These findings underline the importance of stochastically optimal muscle control in the prediction of knee forces within a multi-body dynamics approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.