The ITER Integrated Modelling & Analysis Suite (IMAS) will support both plasma operation and research activities on the ITER tokamak experiment. The IMAS will be accessible to all ITER members as a key tool for the scientific exploitation of ITER. The backbone of the IMAS infrastructure is a standardized, machine-generic data model that represents simulated and experimental data with identical structures. The other outcomes of the IMAS design and prototyping phase are a set of tools to access data and design integrated modelling workflows, as well as first plasma simulators workflows and components implemented with various degrees of modularity.
In this work we describe our developments towards the provision of a unified access method to different types of computing infrastructures at the interoperation level. For that, we have developed a middleware suite which bridges not interoperable middleware stacks used for building distributed computing infrastructues, UNICORE and gLite. Our solution allows to transparently access and operate on HPC and HTC resources from a single interface. Using Kepler as workflow manager, we provide users with the needed integration of codes to create scientific workflows accessing both types of infrastructures.
The Kepler scientific workflow system enables creation, execution and sharing of workflows across a broad range of scientific and engineering disciplines while also facilitating remote and distributed execution of workflows. In this paper, we present and compare different approaches to distributed execution of workflows using the Kepler environment, including a distributed dataparallel framework using Hadoop and Stratosphere, and Cloud and Grid execution using Serpens, Nimrod/K and Globus actors. We also present real-life applications in computational chemistry, bioinformatics and computational physics to demonstrate the usage of different distributed computing capabilities of Kepler in executable workflows. We further analyze the differences of each approach and provide a guidance for their applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.