Neurogenesis continues throughout adulthood in the mammalian olfactory bulb and hippocampal dentate gyrus, suggesting the hypothesis that recently generated, adult-born neurons contribute to neural plasticity and learning. To explore this hypothesis, we examined whether olfactory experience modifies the responses of adult-born neurons to odorants, using immediate early genes (IEGs) to assay the response of olfactory granule neurons. We find that, shortly after they differentiate and synaptically integrate, the population of adultborn olfactory granule neurons has a greater population IEG response to novel odors than mature, preexisting neurons. Familiarizing mice with test odors increases the response of the recently incorporated adult-born neuron population to the test odors, and this increased responsiveness is long lasting, demonstrating that the response of the adult-born neuron population is altered by experience. In contrast, familiarizing mice with test odors decreases the IEG response of developmentally generated neurons, suggesting that recently generated adult-born neurons play a distinct role in olfactory processing. The increased IEG response is stimulus specific; familiarizing mice with a set of different, "distractor" odors does not increase the adult-born neuron population response to the test odors. Odor familiarization does not influence the survival of adult-born neurons, indicating that the changes in the population response of adultborn neurons are not attributable to increased survival of odor-stimulated neurons. These results demonstrate that recently generated adult-born olfactory granule neurons and older, preexisting granule neurons undergo contrasting experience-dependent modifications in vivo and support the hypothesis that adult-born neurons are involved in olfactory learning.
Integration of sensory-motor information in premotor cortex of rodents occurs largely through callosal and frontal cortical association projections directed in a hierarchically organized manner. Although most anatomical studies in rodents have been performed in rats, mammalian genetic models have focused on mice, because of their successful manipulation on the genetic and cell biological levels. It is therefore important to establish the normal patterns of anatomical connectivity in mice, which potentially differ from those in rats. The goal of this study is to investigate the anatomical development of callosal and frontal premotor projection neurons (CPN and FPN, respectively) in mouse sensory-motor and premotor cortex and to investigate quantitatively the potential laminar differences between these neurons with simultaneous callosal and frontal projections during development. The retrograde tracers Fluoro-Gold and DiI were injected into sensory-motor and premotor cortices, respectively, C57Bl/6 mice at different developmental times (P2, P8, P21, adult). We found that, in contrast to the case in primate and cat, there is widespread overlap in populations of long-distance projection neurons in mice; many projection neurons have simultaneous projections to both contralateral somatosensory cortex and ipsilateral frontal cortex, and a considerable number of these dual projections persist into adulthood. In addition, there are significant laminar differences in the percentage of neurons with simultaneous callosal and frontal projections, and an isolated population of layer V FPN has bilateral projections to both premotor cortical hemispheres. Taken together, our results indicate that a large proportion of individual projection neurons maintains simultaneous callosal and frontal projections in adult mice, suggesting that these dual projections might serve the critical function of integrating motor coordination information with multimodal association areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.