A series of thiosemicarbazone derivatives was prepared and their anti-tumor activity in vitro was tested. The X-ray investigation performed for compounds T2, T3 and T5 confirmed the synthesis pathway and assumed molecular structures of analyzed thiosemicarbazones. The conformational preferences of the thiosemicarbazone system were characterized using theoretical calculations by AM1 method. Selected compounds were converted into complexes of Cu (II) ions. The effect of complexing on anti-tumor activity has been investigated. The copper(II) complexes, with Schiff bases T1, T10, T12, T13, and T16 have been synthesized and characterized by chemical and elemental analysis, FTIR spectroscopy and TGA method. Thermal properties of coordination compounds were studied using TG-DTG techniques under dry air atmosphere. G361, A375, and SK-MEL-28 human melanoma cells and BJ human normal fibroblast cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The compounds with the most promising anti-tumour activity were then selected and their cytotoxicity was verified with cell cycle analysis and apoptosis/necrosis detection. Additionally, DNA damages in the form of a basic sites presence and the expression of oxidative stress and DNA damage response genes were evaluated. The obtained results indicate that complexation of thiosemicarbazone derivatives with Cu (II) ions improves their antitumor activity against melanoma cells. The observed cytotoxic effect is associated with DNA damage and G2/M phase of cell cycle arrest as well as disorders of the antioxidant enzymes expression.
Four solid compounds with formulae: Co(OAc)2(Im)·H2O (I), Ni(OAc)2(Im)1.5·2H2O (II), Cu2(OAc)4(Im) (III) and Zn(OAc)2(Im)·H2O (IV) (where: Im = 1H-Imidazole) were prepared and characterized by chemical and elemental analysis, powder X-ray diffraction patterns and FTIR spectroscopy. Catalytic properties of each complex for styrene oxidation reaction were investigated. Furthermore, thermal properties of compounds were studied using the TG-DTG and DSC techniques under dry air atmosphere. Additionally, volatile thermal decomposition and fragmentation products were also investigated using the TG-FTIR spectra in air.
Two new pyrazole derivatives, namely compound 1 and compound 2, have been synthesized, and their biological activity has been evaluated. Monocrystals of the obtained compounds were thoroughly investigated using single-crystal X-ray diffraction analysis, FTIR spectroscopy, and NMR spectroscopy. The results gathered from all three techniques are in good agreement, provide complete information about the structures of 1 and 2, and confirm their high purity. Thermal properties were studied using thermogravimetric analysis; both 1 and 2 are stable at room temperature. In order to better characterize 1 and 2, some physicochemical and biological properties have been evaluated using ADMET analysis. The cytotoxic activity of both compounds was determined using the MTT assay on the A549 cell line in comparison with etoposide. It was determined that compound 2 was effective in the inhibition of human lung adenocarcinoma cell growth and may be a promising compound for the treatment of lung cancer.
Three new compounds, namely [HL]2+[CuCl4]2−, [HL]2+[ZnCl4]2−, and [HL]2+[CdCl4]2− (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.
Two novel mixed ligand complexes with general formula [M2(4,4′-bpy)1.5(CBr2HCOO)6(H2O)2]n (where 4,4′-bpy = 4,4′-bipyridine) were synthesized. Thermal analysis was used to describe a solid intermediate and final products of thermolysis. A coupled TG-MS system was used to monitor principal volatile fragments evolved during pyrolysis. Crystal structures of the complexes were determined. Cationic dinuclear M2 (M(III) = La, Sm) coordination cores were obtained. Both crystal structures are isostructural. Single crystal X-ray diffraction analysis revealed that investigated structures of 1D coordination polymers assembled in ladder-like systems. The central atom replacement resulted in unit cell identity parameter П = 0.0091. Additionally, the isostructurality of the reported La(III) and Sm(III) complexes was revealed using Hirshfeld Surface analysis supported by Enrichment Ratio calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.