The Directive 2010/31/EU on the energy performance of buildings has introduced the standard of “nearly zero-energy buildings” (NZEBs). European requirements place the obligation to reduce energy consumption on all European Union Member States, particularly in sectors with significant energy consumption indicators. Construction is one such sector, as it is responsible for around 40% of overall energy consumption. Apart from a building’s mass and its material and installation solutions, its energy consumption is also affected by its placement relative to other buildings. A proper urban layout can also lead to a reduction in project development and occupancy costs. The goal of this article is to present a method of optimising single-family house complexes that takes elements such as direct construction costs, construction site organisation, urban layout and occupancy costs into consideration in the context of sustainability. Its authors have analysed different proposals of the placement of 40 NZEBs relative to each other and have carried out a multi-criteria analysis of the complex, determining optimal solutions that are compliant with the precepts of sustainability. The results indicated that the layout composed of semi-detached houses scored the highest among the proposed layouts under the parameter weights set by the developer. This layout also scored the highest when parameter weights were uniformly distributed during a test simulation.
Construction projects are characterised by complexity in the technical, organisational and environmental sphere. The organisational complexity of such projects makes it necessary to manage relationships between actors who fulfil various functions. Formal organisational structures that have been developed for this purpose do not always reflect the actual relationships between construction project participants. In literature, scholars more and more often point to the need to identify and monitor such informal relationships and attempt to manage them in order to effectively carry out projects. Structural analysis of so-called self-organising networks of relationships between project participants is carried out on the basis of established structural measures by performing Social Network Analysis (SNA). In a situation when inappropriate communication between project participants relative to management staff expectations is detected, interventions meant to improve communication in such networks are possible. The goal of the article is proposing an optimisation-oriented approach to planning such interventions while taking various constraints, such as communication costs, into consideration. As a part of this optimisation, the authors proposed a method from the heuristic methods group. This solution will support decision-making in terms of intervening within an informal relationship structure. The method was presented on the example of an actual construction project involving the construction of a complex of housing buildings. the self-organising network structure was defined on the basis of a survey carried out among the project’s participants and concerned communication between them over a four-week period. As a result of the structural network analysis, abnormalities in communication between project participants were detected. The optimisation method developed by the authors pointed to possibilities of improving communication effectiveness within this network. The effects of the analysis confirmed the application potential of the method that was presented.
The article presents the cost optimization model for multiunit construction projects. Multiunit projects constitute a special case of repetitive projects. They consist in the realization of many different, when it comes to size, types of residential, commercial, industrial buildings or engineering structures. Due to the specific character of construction works, actual schedules of such projects should not only take into account real costs of construction, but also be subject to specific restrictions, e.g. deadlines for the completion of units imposed by the investor. To solve the NP-hard problem of choosing the order of units’ construction there was metaheuristic algorithm of simulated annealing used. The objective function in the presented optimization model was the total value of the project cost determined on the basis of the mathematical programming model, taking into account direct and indirect costs, costs of missing deadlines and costs of work group discontinuities. In the article, an experimental analysis of the proposed method of solving the optimization task was carried out in a model that showed high efficiency in obtaining suboptimal solutions. In addition, the operation of the proposed model has been presented on a calculation example. The results obtained in it are fully satisfying.
The paper presents a method of priority scheduling that is useful during the planning of multiple-structure construction projects. This approach is an extension of the concept of interactive scheduling. In priority scheduling, it is the planner that can determine how important each of the technological and organisational constraints are to them. A planner’s preferences can be defined through developing a ranking list that defines which constraints are the most important, and those whose completion can come second. The planner will be able to model the constraints that appear at a construction site more flexibly. The article presents a general linear programming model of the planning of multiple-structure construction projects, as well as various values of each of the parameters that allow us to obtain different planning effects. The proposed model has been implemented in a computer program and its effectiveness has been presented on a calculation example.
The article presents the profit optimization model for multi-unit construction projects. Such projects constitute a special case of repetitive projects and are common in residential, commercial, and industrial construction projects. Due to the specific character of construction works, schedules of such projects should take into account many different aspects, including durations and costs of construction works, the possibility of selecting alternative execution modes, and specific restrictions (e.g., deadlines for the completion of units imposed by the investor). To solve the NP-hard problem of choosing the order of units’ construction and the best variants of works, the authors used metaheuristic algorithms (simulated annealing and genetic search). The objective function in the presented optimization model was the total profit of the contractor determined on the basis of the mathematical programming model. This model takes into account monthly cash flows subject to direct and indirect costs, penalties for missing deadlines, costs of work group discontinuities, and borrowing losses. The presented problem is very important for maintaining a good financial condition of the enterprise carrying out construction projects. In the article, an experimental analysis of the proposed method of solving the optimization task was carried out in a model that showed high efficiency in obtaining suboptimal solutions. In addition, the operation of the proposed model has been presented on a calculation example. The results obtained in it are fully satisfying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.