Preoperative cardiogenic shock and early postinfarction septal rupture carry a grave prognosis. Achieving haemodynamic stability prior to surgery may be beneficial but prolonged attempts to improve patients' cardiovascular state are hazardous.
OBJECTIVES
National guidelines advocate the use of clinical prediction models to estimate perioperative mortality for patients undergoing lung resection. Several models have been developed that may potentially be useful but contemporary external validation studies are lacking. The aim of this study was to validate existing models in a multicentre patient cohort.
METHODS
The Thoracoscore, Modified Thoracoscore, Eurolung, Modified Eurolung, European Society Objective Score and Brunelli models were validated using a database of 6600 patients who underwent lung resection between 2012 and 2018. Models were validated for in-hospital or 30-day mortality (depending on intended outcome of each model) and also for 90-day mortality. Model calibration (calibration intercept, calibration slope, observed to expected ratio and calibration plots) and discrimination (area under receiver operating characteristic curve) were assessed as measures of model performance.
RESULTS
Mean age was 66.8 years (±10.9 years) and 49.7% (n = 3281) of patients were male. In-hospital, 30-day, perioperative (in-hospital or 30-day) and 90-day mortality were 1.5% (n = 99), 1.4% (n = 93), 1.8% (n = 121) and 3.1% (n = 204), respectively. Model area under the receiver operating characteristic curves ranged from 0.67 to 0.73. Calibration was inadequate in five models and mortality was significantly overestimated in five models. No model was able to adequately predict 90-day mortality.
CONCLUSIONS
Five of the validated models were poorly calibrated and had inadequate discriminatory ability. The modified Eurolung model demonstrated adequate statistical performance but lacked clinical validity. Development of accurate models that can be used to estimate the contemporary risk of lung resection is required.
Abstract. In most cases of diseased heart valves, they can be repaired or replaced with biological or mechanical prostheses. Biological prostheses seem to be safer than mechanical ones and are applied with good clinical outcomes. Their disadvantage, when compared with mechanical valves, is durability. In the development and application of mechanical and biological heart valves, a significant role can be played by a Hybrid (Hydro-Numerical) Circulatory Model. The aim of this paper is to demonstrate the opportunities created by the hybrid model for investigations of mechanical heart valves and their computer models under conditions similar to those of the circulatory system. A diode-resistor numerical valve model and three different design mechanical aortic valves were tested. To perform their investigations, computer applications were developed under RT LabView to be run on a PC. Static and dynamic characteristics of the valves were measured and registered -pressure in the numerical time-varying elastance left ventricle (pLV ), in the aorta (pas) and flow (f ), proving, among other factors, that 1) time delay of pas with respect to pLV is mainly related to the valve's opening time, and 2) the valves of substantially different designs tested under identical hydrodynamic conditions reveal nearly the same dynamic performance.
Cardiac surgeons have to face the problem of impaired left ventricle function in patients undergoing routine valve or coronary procedures. The intra-aortic balloon pump is not always effective in preventing cardiac failure. The idea of using a microaxial rotating pump as a short-term perioperative support seems to be a convenient solution. The case of a patient with dilated cardiomyopathy undergoing combined mitral and coronary surgery with elective use of the Impella LD pump is presented. Various options of applying the Impella device are discussed, especially as a bridge to transplant or bridge to recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.