Image-guided interventions often rely on deformable multimodal registration to align pre-treatment and intra-operative scans. There are a number of requirements for automated image registration for this task, such as a robust similarity metric for scans of different modalities with different noise distributions and contrast, an efficient optimisation of the cost function to enable fast registration for this time-sensitive application, and an insensitive choice of registration parameters to avoid delays in practical clinical use. In this work, we build upon the concept of structural image representation for multi-modal similarity. Discriminative descriptors are densely extracted for the multi-modal scans based on the "self-similarity context". An efficient quantised representation is derived that enables very fast computation of point-wise distances between descriptors. A symmetric multi-scale discrete optimisation with diffusion regularisation is used to find smooth transformations. The method is evaluated for the registration of 3D ultrasound and MRI brain scans for neurosurgery and demonstrates a significantly reduced registration error (on average 2.1 mm) compared to commonly used similarity metrics and computation times of less than 30 seconds per 3D registration.
Several biomedical applications require accurate image registration that can cope effectively with complex organ deformations. This paper addresses this problem by introducing a generic deformable registration algorithm with a new regularization scheme, which is performed through bilateral filtering of the deformation field. The proposed approach is primarily designed to handle smooth deformations both between and within body structures, and also more challenging deformation discontinuities exhibited by sliding organs. The conventional Gaussian smoothing of deformation fields is replaced by a bilateral filtering procedure, which compromises between the spatial smoothness and local intensity similarity kernels, and is further supported by a deformation field similarity kernel. Moreover, the presented framework does not require any explicit prior knowledge about the organ motion properties (e.g. segmentation) and therefore forms a fully automated registration technique. Validation was performed using synthetic phantom data and publicly available clinical 4D CT lung data sets. In both cases, the quantitative analysis shows improved accuracy when compared to conventional Gaussian smoothing. In addition, we provide experimental evidence that masking the lungs in order to avoid the problem of sliding motion during registration performs similarly in terms of the target registration error when compared to the proposed approach, however it requires accurate lung segmentation. Finally, quantification of the level and location of detected sliding motion yields visually plausible results by demonstrating noticeable sliding at the pleural cavity boundaries.
Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However, the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation vectors impractical. For this reason, previous work on medical image registration using graphical models has largely relied on using a parameterised deformation model and on the use of iterative coarse-to-fine optimisation schemes. In this paper, we propose an approach that enables accurate voxel-wise deformable registration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution scheme. This is achieved by representing the image domain as multiple comprehensive supervoxel layers and making use of the full marginal distribution of all probable displacement vectors after inferring regularity of the deformations using belief propagation. The optimisation acts on the coarse scale representation of supervoxels, which provides sufficient spatial context and is robust to noise in low contrast areas. Minimum spanning trees, which connect neighbouring supervoxels, are employed to model pair-wise deformation dependencies. The optimal displacement for each voxel is calculated by considering the probabilities for all displacements over all overlapping supervoxel graphs and subsequently seeking the mode of this distribution. We demonstrate the applicability of this concept for two challenging applications: first, for intra-patient motion estimation in lung CT scans; and second, for atlas-based segmentation propagation of MRI brain scans. For lung registration, the voxel-wise mode of displacements is found using the mean-shift algorithm, which enables us to determine continuous valued sub-voxel motion vectors. Finding the mode of brain segmentation labels is performed using a voxel-wise majority voting weighted by the displacement uncertainty estimates. Our experimental results show significant improvements in registration accuracy when using the additional information provided by the registration uncertainty estimates. The multi-layer approach enables fusion of multiple complementary proposals, extending the popular fusion approaches from multi-image registration to probabilistic one-to-one image registration.
Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
Despite significant advances in the development of deformable registration methods, motion correction of deformable organs such as the liver remain a challenging task. This is due to not only low contrast in liver imaging, but also due to the particularly complex motion between scans primarily owing to patient breathing. In this paper, we address abdominal motion estimation using a novel regularization model that is advancing the state-of-the-art in liver registration in terms of accuracy. We propose a novel regularization of the deformation field based on spatially adaptive over-segmentation, to better model the physiological motion of the abdomen. Our quantitative analysis of abdominal Computed Tomography and dynamic contrast-enhanced Magnetic Resonance Imaging scans show a significant improvement over the state-of-the-art Demons approaches. This work also demonstrates the feasibility of segmentationfree registration between clinical scans that can inherently preserve sliding motion at the lung and liver boundary interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.