In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature-salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag-induced salinity error of about 0.3 psu was found and successfully corrected.
The aim of this community white paper is to make recommendations for a glider component of a global ocean observing system. We first recommend the adoption of an Argo-like data system for gliders. Then, we argue that combining glider deployments with the other components (ships, moorings, floats and satellites) will considerably enhance our capacity for observing the ocean by filling gaps left by the other observing systems. Gliders could be deployed to sample most of the western and eastern boundary circulations and the regional seas (around 20 basins in the world) which are not well covered by the present global ocean observing system and in the vicinity of fixed point time series stations. These plans already involve people scattered around the world in Australia, Canada, Cyprus, France, Germany, Italy, Norway, Spain, UK, and the USA, and will certainly expand to many other countries. A rough estimate of resources required is about 13M$/Euro for ~20+ gliders permanently at sea during five years in the world ocean, based on present scientific infrastructures.
This paper describes the high-resolution Western Mediterranean Sea Operational Forecasting System (WMOP) developed at the Balearic Islands Coastal Observing and Forecasting System (SOCIB). The system runs on a daily basis driven by high-resolution atmospheric forcing, providing 3-day forecasts of physical oceanic variables with a 2 km horizontal resolution, thus representing the ocean variability from mesoscale to basin scale from the Gibraltar Strait to the Sardinia Channel. A systematic regional monitoring and validation system has been developed using multi-platform observations, allowing the evaluation of both the overall realism of the predictions and the specific errors in each sub-basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.