We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between Magnus force, repulsive skyrmion-skyrmion interaction and thermal noise yields different regimes during non-equilibrium relaxation. In the noise-dominated regime the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slow decaying correlations. These two regimes are characterized by different values of the aging exponent. In general, the Magnus force accelerates the approach to the steady state.
Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to non-trivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the non-trivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening.
Using Langevin molecular dynamics simulations we study relaxation processes of interacting skyrmion systems with and without quenched disorder. Using the typical diffusion length as the time-dependent length characterizing the relaxation process, we find that clean systems always display dynamical scaling, and this even in cases where the typical length is not a simple power law of time. In the presence of the Magnus force, two different regimes are identified as a function of the noise strength. The Magnus force has also a major impact when attractive pinning sites are present, as this velocity-dependent force helps skyrmions to bend around defects and avoid caging effects. With the exception of the limit of large noise, for which dynamical scaling persists even in the presence of quenched disorder, attractive pinning sites capture a substantial fraction of skyrmions which results in a complex behavior of the two-time auto-correlation function that is not reproduced by a simple aging scaling ansatz.
We examine skyrmions driven periodically over random quenched disorder and show that there is a transition from reversible motion to a state in which the skyrmion trajectories are chaotic or irreversible. We find that the characteristic time required for the system to organize into a steady reversible or irreversible state exhibits a power law divergence near a critical ac drive period, with the same exponent as that observed for reversible to irreversible transitions in periodically sheared colloidal systems, suggesting that the transition can be described as an absorbing phase transition in the directed percolation universality class. We compare our results to the behavior of an overdamped system and show that the Magnus term enhances the irreversible behavior by increasing the number of dynamically accessible orbits. We discuss the implications of this work for skyrmion applications involving the long time repeatable dynamics of dense skyrmion arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.