This article presents an estimation method of the BLDC rotor position with asymmetrically arranged Hall sensors. Position estimation is necessary to control the motor by methods other than block commutation. A sinusoidal control method was selected for the research, which significantly reduces torque ripples and acoustic noise and is quite simple to implement. Inaccurate performance of the elements determining the position of the BLDC motor rotor causes a large error in the position estimation and has a negative impact on the operation of the drive controlled in this way. Using the developed control algorithms, it is possible to correctly determine the mechanical position of the rotor even for multi-pole motors. The proposed method is relatively easy to implement and does not require modification of control systems, being limited to changes only in the software of such devices. The tests of the actual system clearly show the usefulness of such a control method and its effectiveness.
Low-power BLDC motors are often and willingly used in many drive devices due to their functional advantages. They are also used in advanced positioning systems, where their good dynamic performance parameters are used. The control systems use shaft position sensors mounted on motors, the structure of which is based on magnetic elements and Hall sensors. The aim of this article was to investigate the influence of the BLDC motor quality on the correct operation of the control semiconductor system. The article presents the effect of BLDC motor shaft observation system’s inaccuracies on the friction and current amplitudes of individual inverter keys. Waveforms of the controller phase currents are considered and recorded on a test bench that allows precise sensor position changes. In addition, the effect of sensor misalignment on power losses in individual inverter transistors is investigated. The article shows a significant influence of the motor shaft observation system’s assembly accuracy on the current amplitudes of individual driver transistors and their power losses, which makes it necessaryto consider these parameters when constructing power electronic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.