Background: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. Methods: The BioX 3D printer (Cellink), 600 μm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, β-cells, fibroblasts, and endothelial cells. Results: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. Conclusions: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.
Purpose -Both the importance of the natural convection in science and engineering and the shortage of publications in the field of numerical features of time-stepping schemes for the simulation of coupled heat and fluid flow problems motivate the present work. The paper aims to discuss these issues. Design/methodology/approach -The paper presents the unconditionally stable time-stepping scheme for simulation of coupled problems of mass and heat transport. The paper is divided into two parts. The first part concerns the mathematical formulation of the scheme and discusses its implementation. The second part focuses on the numerical simulation and its results. A detailed investigation of the temporal order of the scheme with respect to the L2-norms of the errors of the pressure, velocity, temperature and divergence of velocity fields has also been given. Findings -The work shows that it is possible to formulate a numerical scheme which is unconditionally stable with respect to the time step size. Moreover, application of the spectral element method for the spatial discretization results in a high order of approximation in space and very good overall accuracy. Furthermore, the investigation of the numerical features of the scheme showed that the formal temporal order of the scheme (formally second order) has been deferred very slightly and the order of 1.8-1.9 is achieved for all unknown fields. Originality/value -The paper presents a new unconditionally stable scheme for simulation of unsteady flows with bidirectional coupling of heat transfer and the fluid flow. It also carefully investigates the numerical behaviour of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.