We study monotone P1 finite element methods on unstructured meshes for fully non-linear, degenerately parabolic Isaacs equations with isotropic diffusions arising from stochastic game theory and optimal control and show uniform convergence to the viscosity solution. Elliptic projections are used to manage singular behaviour at the boundary and to treat a violation of the consistency conditions from the framework by Barles and Souganidis by the numerical operators. Boundary conditions may be imposed in the viscosity or in the strong sense, or in a combination thereof. The presented monotone numerical method has well-posed finite dimensional systems, which can be solved efficiently with Howard’s method.
We show strong uniform convergence of monotone P1 finite element methods to the viscosity solution of isotropic parabolic Hamilton-Jacobi-Bellman equations with mixed boundary conditions on unstructured meshes and for possibly degenerate diffusions. Boundary operators can generally be discontinuous across face-boundaries and type changes. Robin-type boundary conditions are discretised via a lower Dini derivative. In time the Bellman equation is approximated through IMEX schemes. Existence and uniqueness of numerical solutions follows through Howard's algorithm. Finite element method; Hamilton
We propose a model to quantify the effect of parameter uncertainty on the option price in the Heston model. More precisely, we present a Hamilton-Jacobi-Bellman framework which allows us to evaluate best and worst case scenarios under an uncertain market price of volatility risk. For the numerical approximation the Hamilton-Jacobi-Bellman equation is reformulated to enable the solution with a finite element method. A case study with butterfly options exhibits how the dependence of Delta on the magnitude of the uncertainty is nonlinear and highly varied across the parameter regime.
We study monotone P1 finite element methods on unstructured meshes for fully non-linear, degenerately parabolic Isaacs equations with isotropic diffusions arising from stochastic game theory and optimal control and show uniform convergence to the viscosity solution. Elliptic projections are used to manage singular behaviour at the boundary and to treat a violation of the consistency conditions from the framework by Barles and Souganidis by the numerical operators. Boundary conditions may be imposed in the viscosity or in the strong sense, or in a combination thereof. The presented monotone numerical method has well-posed finite dimensional systems, which can be solved efficiently with Howard's method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.