We present the results of an analysis of the 16S rRNA-based taxonomical structure of bacteria together with an analysis of carbon source utilization ability using EcoPlate (Biolog, USA) metabolic fingerprinting assessment against the backdrop of physicochemical parameters in fifteen interconnected lakes. The lakes exhibit a wide spectrum of trophic gradients and undergo different intensities of anthropopressure. Sequences of V3–V4 16S rRNA genes binned by taxonomic assignment to family indicated that bacterial communities in the highly eutrophicated lakes were distinctly different from the bacterial communities in the meso-eutrophic lakes (ANOSIM r = 0.99, p = 0.0002) and were characterized by higher richness and more diverse taxonomical structure. Representatives of the Actinobacteria , Proteobacteria , Cyanobacteria , Planctomycetes , Verrucomicrobia , Bacteroides phyla predominated. In most cases their relative abundance was significantly correlated with lake trophic state. We found no similar clear relationship of community-level physiological profiling with lake trophic state. However, we found some significant links between the taxonomic and metabolic structure of the microbes in the studied lakes (Mantel’s correlation r = 0.22, p = 0.006). The carbon source utilization ability of the studied microorganisms was affected not only by the taxonomic groups present in the lakes but also by various characteristics like a high PO 4 3− concentration inhibiting the utilization of phosphorylated carbon.
The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69-100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.
This study analyzes proteolytic enzyme persistence and the role of dead (or metabolically inactive) aquatic bacteria in organic matter cycling. Samples from four lakes of different trophic status were used. Irrespective of the trophic status of the examined lakes, bacterial aminopeptidases remained active even 72 h after the death of the bacteria that produced them. The total pool of proteolytic enzymes in natural lake water samples was also stable. We found that the rates of amino acid enzymatic release from proteinaceous matter added to preserved lake water sample were constant for at least 96 h (r(2) = 0.99, n = 17, P ≤ 0.0001, V(max) = 84.6 nM h(-1) ). We also observed that proteases built into bacterial cell debris fragments remained active for a long time, even after the total destruction of cells. Moreover, during 24 h of incubation time, about 20% of these enzymatically active fragments adsorbed onto natural seston particles, becoming a part of the 'attached enzymes system' that is regarded as the 'hot-spot' of protein degradation in aquatic ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.