Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
TENT5C is a non-canonical cytoplasmic poly(A) polymerase highly expressed by activated B cells to suppress their proliferation. Here we measure the global distribution of poly(A) tail lengths in responsive B cells using a Nanopore direct RNA-sequencing approach, showing that TENT5C polyadenylates immunoglobulin mRNAs regulating their half-life and consequently steady-state levels. TENT5C is upregulated in differentiating plasma cells by innate signaling. Compared with wild-type, Tent5c −/− mice produce fewer antibodies and have diminished T-cell-independent immune response despite having more CD138 high plasma cells as a consequence of accelerated differentiation. B cells from Tent5c −/− mice also have impaired capacity of the secretory pathway, with reduced ER volume and unfolded protein response. Importantly, these functions of TENT5C are dependent on its enzymatic activity as catalytic mutation knock-in mice display the same defect as Tent5c −/−. These findings define the role of the TENT5C enzyme in the humoral immune response.
Mammalian target of rapamycin (mTOR) is a protein kinase that senses nutrient availability, trophic factors support, cellular energy level, cellular stress, and neurotransmitters and adjusts cellular metabolism accordingly. Adequate mTOR activity is needed for development as well as proper physiology of mature neurons. Consequently, changes in mTOR activity are often observed in neuropathology. Recently, several groups reported that seizures increase mammalian target of rapamycin (mTOR) kinase activity, and such increased activity in genetic models can contribute to spontaneous seizures. However, the current knowledge about the spatiotemporal pattern of mTOR activation induced by proconvulsive agents is rather rudimentary. Also consequences of insufficient mTOR activity on a status epilepticus are poorly understood. Here, we systematically investigated these two issues. We showed that mTOR signaling was activated by kainic acid (KA)-induced status epilepticus through several brain areas, including the hippocampus and cortex as well as revealed two waves of mTOR activation: an early wave (2 h) that occurs in neurons and a late wave that predominantly occurs in astrocytes. Unexpectedly, we found that pretreatment with rapamycin, a potent mTOR inhibitor, gradually (i) sensitized animals to KA treatment and (ii) induced gross anatomical changes in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.