We present a mechanism for detecting adversarial examples based on data representations taken from the hidden layers of the target network. For this purpose, we train individual autoencoders at intermediate layers of the target network. This allows us to describe the manifold of true data and, in consequence, decide whether a given example has the same characteristics as true data. It also gives us insight into the behavior of adversarial examples and their flow through the layers of a deep neural network. Experimental results show that our method outperforms the state of the art in supervised and unsupervised settings.Preprint. Under review.
Background: Some studies suggest that as much as 40% of all causes of death in a group of patients with schizophrenia can be attributed to suicides and compared with the general population, patients with schizophrenia have an 8.5-fold greater suicide risk (SR). There is a vital need for accurate and reliable methods to predict the SR among patients with schizophrenia based on biological measures. However, it is unknown whether the suicidal risk in schizophrenia can be related to alterations in spontaneous brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI) measures can be used alongside machine learning (ML) algorithms in order to identify patients with SR.Methods: Fifty-nine participants including patients with schizophrenia with and without SR as well as age and gender-matched healthy underwent 13 minutes of resting-state functional magnetic resonance imaging. Both static and dynamic indexes of the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) was calculated and used as an input for five machine learning algorithms: Gradient boosting (GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine. Results: All groups revealed different internetwork functional connectivity in ventral DMN and anterior SN. The best performance was reached for the LASSO applied to FC with an accuracy of 70% and AUROC of 0.76 (p<0.05). Significant classification ability was also reached for GB and LR using fALFF and ALFF measures.Conclusion: Our findings suggest that SR in schizophrenia can be seen on the level of DMN and SN functional connectivity alterations. ML algorithms were able to significantly differentiate SR patients. Our results could be useful in developing neuromarkers of SR in schizophrenia based on non-invasive rsfMRI.
In recent years, a lot of attention is paid to deep learning methods in the context of vision-based construction site safety systems, especially regarding personal protective equipment. However, despite all this attention, there is still no reliable way to establish the relationship between workers and their hard hats. To answer this problem a combination of deep learning, object detection and head keypoint localization, with simple rule-based reasoning is proposed in this article. In tests, this solution surpassed the previous methods based on the relative bounding box position of different instances, as well as direct detection of hard hat wearers and non-wearers. The results show that the conjunction of novel deep learning methods with humanly-interpretable rule-based systems can result in a solution that is both reliable and can successfully mimic manual, on-site supervision. This work is the next step in the development of fully autonomous construction site safety systems and shows that there is still room for improvement in this area.
Strong emotions are among others manifested in the expressive movements (facial expression). Facial expressions are natural and universal by nature. They do not depend on ethnicity, culture, social status, age, etc. Nonetheless, humans are sometimes capable of controlling their facial expressions and hiding their emotions. Simulating emotions is a fundamental acting skill. However, controlling facial impressions takes time. The onset of such a control is delayed by anything from 0.25 to even 0.1 second – the period when the authentic facial expression, adequate to the emotion is demonstrated – and therefore remains imperceptible to an external observer. This short-lived facial expression observed in that short meantime is known as microexpression. FaceReader, designed by Dutch company Noldus (established and directed by Professor Lucas Noldus), is a software package for automatic recognition and analysis of facial expression. As its diagnostic value for validity as well as reliability, that is the level of correct indications, remains unknown, we decided to determine it experimentally and have chosen to run an experiment comparing its diagnostic value with that of a traditional polygraph examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.