In order to measure the thermal conductivity of small needlelike samples (2.0×0.05×0.1 mm3) such as pentatellurides and single carbon fibers, we have developed a new technique called the parallel thermal conductance (PTC) technique. In the more typical steady state method that is used for measuring thermal conductivity, thermocouples are attached to the sample in order to measure the temperature gradient and a heater in order to supply this gradient. However, attaching thermocouples and heaters directly to small samples may be relatively difficult, and cause large heat losses and errors. Thus, the measurement of the thermal conductivity of small samples and thin films has been a formidable challenge, with only few successes, due, among other factors, to the heat loss. It is also difficult for the small samples to support the heaters and thermocouples without causing damage to the sample. In this paper we describe the recently developed PTC method providing measurements on standards as well as single carbon fibers, in addition to preliminary pentatelluride crystals measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.