The ability to guide the assembly of nanosized objects reversibly with external stimuli, in particular light, is of fundamental importance, and it contributes to the development of applications as diverse as nanofabrication and controlled drug delivery. However, all the systems described to date are based on nanoparticles (NPs) that are inherently photoresponsive, which makes their preparation cumbersome and can markedly hamper their performance. Here we describe a conceptually new methodology to assemble NPs reversibly using light that does not require the particles to be functionalized with light-responsive ligands. Our strategy is based on the use of a photoswitchable medium that responds to light in such a way that it modulates the interparticle interactions. NP assembly proceeds quantitatively and without apparent fatigue, both in solution and in gels. Exposing the gels to light in a spatially controlled manner allowed us to draw images that spontaneously disappeared after a specific period of time.
Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.
Observation of molecular dynamics with quantum state resolution is one of the major challenges in chemical physics. Complete characterization of collision dynamics leads to the microscopic understanding and unraveling of different quantum phenomena such as scattering resonances. Here we present an experimental approach for observing molecular dynamics involving neutral particles and ions that is capable of providing state-to-state mapping of the dynamics. We use Penning ionization reaction between argon and metastable helium to generate argon ion and ground state helium atom pairs at separation of several angstroms. The energy of an ejected electron carries the information about the initial electronic state of an ion. The coincidence detection of ionic products provides a state resolved description of the post-ionization ion-neutral dynamics. We demonstrate that correlation between the electron and ion energy spectra enables us to directly observe the spin-orbit excited Feshbach resonance state of HeAr +. We measure the lifetime of the quasi-bound HeAr + A 2 state and discuss possible applications of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.