Systemic delivery of therapeutic proteins through gene transfer approaches has been carried out mostly by ex vivo transduction of single cells or by direct in vivo injection of an expression vector. In this work an intact miniature biopsy of human dermis (microdermis) is harvested and transduced ex vivo by a viral vector encoding a gene for the therapeutic protein. The microdermis preserves its three-dimensional structure and viability during the ex vivo manipulations. Furthermore, upon transduction with adenoviral and adeno-associated viral vectors the microdermis secretes recombinant human erythropoietin (hEPO). Biochemical analysis of the secreted hEPO showed similarity to the clinically approved recombinant hEPO. Subcutaneous implantation of microdermal hEPO into SCID mice exhibited hEPO secretion in the blood circulation and preserved elevated hematocrit for several months, demonstrating the technology's potential for sustained delivery of protein therapeutics.
A novel approach for sustained production of therapeutic proteins is described, using genetic modification of intact autologous micro-organ tissue explants from the subject's own skin. The skin-derived micro-organ can be maintained viable ex vivo for extended periods and is transduced with a transgene encoding a desired therapeutic protein, resulting in protein-secreting micro-organ (biopump (BP)). The daily protein production from each BP is quantified, enabling drug dosing by subcutaneous implantation of the requisite number of BPs into the patient to provide continuous production to the circulation of a known amount of the therapeutic protein. Each implanted BP remains localized and is accessible, to enable removal or ablation if needed. Examples from preclinical and clinical studies are presented, including use of associated virus vector 1 and helper-dependent adenoviral vectors producing BPs to provide long-term sustained secretion of recombinant interferon-α and erythropoietin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.