Communicating location-specific information to pedestrians is a challenging task which can be aided by user-friendly digital technologies. In this paper, landmark visibility analysis, as a means for developing more usable pedestrian navigation systems, is discussed. Using an algorithmic framework for image-based 3D analysis, this method integrates a 3D city model with identified landmarks and produces raster visibility layers for each one. This output enables an Android phone prototype application to indicate the visibility of landmarks from the user's actual position. Tested in the field, the method achieves sufficient accuracy for the context of use and improves navigation efficiency and effectiveness.2. Landmark visibility. 3. User-centred design. 4. Usability testing.
This study presents a rain area detection scheme that uses a gradient based adaptive technique for daytime and nighttime rain area detection and correction from reflectance and infrared (IR) brightness temperatures data of the Meteosat Second Generation (MSG) satellite. First, multiple parametric rain detection models developed from MSG’s reflectance and IR data were calibrated and validated with rainfall data from a dense network of rain gauge stations and investigated to determine the best model parameters. The models were based on a conceptual assumption that clouds characterised by the top properties, e.g., high optical thickness and effective radius, have high rain probabilities and intensities. Next, a gradient based adaptive correction technique that relies on rain area-specific parameters was developed to reduce the number and sizes of the detected rain areas. The daytime detection with optical (VIS0.6) and near IR (NIR1.6) reflectance data achieved the best detection skill. For nighttime, detection with thermal IR brightness temperature differences of IR3.9-IR10.8, IR3.9-WV73 and IR108-WV62 showed the best detection skill based on general categorical statistics. Compared to the Global Precipitation Measurement (GPM) Integrated Mult-isatellitE Retrievals for GPM (IMERG) and the gauge station data from the southwest of Kenya, the model showed good agreement in the spatial dynamics of the detected rain area and rain rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.