The BUGA fibre pavilion built in April 2019 at the Bundesgartenschau in Heilbronn, Germany, is the most recent coreless fibre winding research pavilion developed from the collaboration between ICD/ITKE at the University of Stuttgart. The research goal is to create lightweight and high-performance lattice composite structures through robotic fabrication. The pavilion is composed of 60 carbon and glass fibre components, and is covered by a prestressed ethylene tetrafluoroethylene (ETFE) membrane. Each of the components is hollow in section and bone-like in shape. They are joined through steel connectors at the intersecting nodes where the membrane is also supported through steel poles. The components are fabricated by coreless filament winding (CFW), a technique where fibre filaments impregnated with resin are wound freely between two rotating scaffolds by a robotic arm. This novel structural system constitutes a challenge for the designer when proving and documenting the load-carrying capacity of the design. This paper outlines and elaborates on the core methods and workflows followed for the structural design, optimization and detailing of the BUGA fibre pavilion.
A hemispherical research demonstration pavilion was presented to the public from April to October 2019. It was the first large-scale lightweight dome with a supporting roof structure primarily made of carbon- and glass-fiber-reinforced composites, fabricated by robotic coreless filament winding. We conducted monitoring to ascertain the sturdiness of the fiber composite material of the supporting structure over the course of 130 days. This paper presents the methods and results of on-site monitoring as well as laboratory inspections. The thermal behavior of the pavilion was characterized, the color change of the matrix was quantified, and the inner composition of the coreless wound structures was investigated. This validated the structural design and revealed that the surface temperatures of the carbon fibers do not exceed the guideline values of flat, black façades and that UV absorbers need to be improved for such applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.