Computing and visualizing sets of elements and their relationships is one of the most common tasks one performs when analyzing and organizing large amounts of data. Common representations of sets such as convex or concave geometries can become cluttered and difficult to parse when these sets overlap in multiple or complex ways, e.g., when multiple elements belong to multiple sets. In this paper, we present a design study of a novel set visual representation, LineSets, consisting of a curve connecting all of the set's elements. Our approach to design the visualization differs from traditional methodology used by the InfoVis community. We first explored the potential of the visualization concept by running a controlled experiment comparing our design sketches to results from the state-of-the-art technique. Our results demonstrated that LineSets are advantageous for certain tasks when compared to concave shapes. We discuss an implementation of LineSets based on simple heuristics and present a study demonstrating that our generated curves do as well as human-drawn ones. Finally, we present two applications of our technique in the context of search tasks on a map and community analysis tasks in social networks.
The analysis of brain connectivity is a vast field in neuroscience with a frequent use of visual representations and an increasing need for visual analysis tools. Based on an in-depth literature review and interviews with neuroscientists, we explore high-level brain connectivity analysis tasks that need to be supported by dedicated visual analysis tools. A significant example of such a task is the comparison of different connectivity data in the form of weighted graphs. Several approaches have been suggested for graph comparison within information visualization, but the comparison of weighted graphs has not been addressed. We explored the design space of applicable visual representations and present augmented adjacency matrix and node-link visualizations. To assess which representation best support weighted graph comparison tasks, we performed a controlled experiment. Our findings suggest that matrices support these tasks well, outperforming node-link diagrams. These results have significant implications for the design of brain connectivity analysis tools that require weighted graph comparisons. They can also inform the design of visual analysis tools in other domains, e.g. comparison of weighted social networks or biological pathways.
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-We present KelpFusion: a method for depicting set membership of items on a map or other visualization using continuous boundaries. KelpFusion is a hybrid representation that bridges hull techniques such as Bubble Sets and Euler Diagrams and line-and graph-based techniques such as LineSets and Kelp Diagrams. We describe an algorithm based on shortest-path graphs to compute KelpFusion visualizations. Based on a single parameter, the shortest-path graph varies from the minimal spanning tree to the convex hull of a point set. Shortest-path graphs aim to capture the shape of a point set and smoothly adapt to sets of varying densities. KelpFusion fills enclosed faces based on a set of simple legibility rules. We present the results of a controlled experiment comparing KelpFusion to Bubble Sets and LineSets. We conclude that KelpFusion outperforms Bubble Sets both in accuracy and completion time, and outperforms LineSets in completion time.
International audienceThis work advances our understanding of children's visualization literacy, and aims to improve it through a novel approach for teaching visualization at elementary school. We first contribute an analysis of data graphics and activities employed in grade K to 4 educational materials, and the results of a survey conducted with 16 elementary school teachers. We find that visualization education could benefit from integrating pedagogical strategies for teaching abstract concepts with established interactive visualization techniques. Building on these insights, we develop and study design principles for novel interactive teaching material aimed at increasing children's visualization literacy. We specifically contribute C'est La Vis, an online platform for teachers and students to respectively teach and learn about pictographs and bar charts, and report on our initial observations of its use in grades K and 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.