Objectives Fructose 1,6 bisphosphatase (FBPase) deficiency is a rare autosomal recessively inherited metabolic disease. It is encoded by FBP1, and the enzyme catalyzes the hydrolysis of fructose-1,6-bisphosphate to fructose 6-phosphate. Patients with recurrent episodes of metabolic acidosis, hypoglycemia, hypertriglyceridemia, and hyperketonemia are present. Methods In this study, we describe the clinical, biochemical, and molecular genetic features of six unrelated Turkish patients from six different families who were genetically diagnosed with FBPase deficiency in our clinic between 2008 and 2020. Their clinical and laboratory data were collected retrospectively. Next-generation sequencing (NGS) was performed for the molecular genetic analysis. Results All patients were hospitalized with recurrent hypoglycemia and metabolic acidosis episodes. Three out of six patients were presented in the neonatal period. The mean age at diagnosis was 26 months. NGS revealed a known homozygous gross deletion including exon 2 in three patients (50%), a known homozygous c.910_911dupTT pathogenic variant in one patient (16%), a novel homozygous c.651_653delCAGinsTAA likely pathogenic variant, and another novel homozygous c.705+5G>A splice site variant. Leukocyte FBPase analysis detected no enzyme activity in the patient with homozygous c.705+5G>A splice site variant. Conclusions We identified two novel mutations in this study. One of them is a splice site mutation which is five bases downstream of the exon, and the other one is an indel mutation. Both of the splice site and indel mutations are exceedingly rare in FBP1, and to the best of our knowledge, there are second splice site and indel variants reported in the literature. Exon 2 deletion is the most common mutation consistent with the previous reports in Turkish patients. FBPase is a frequent cause of hypoglycemia and metabolic acidosis, and the widespread use of molecular genetic analysis would contribute to the enlightenment of advanced genetic factors and possible genotype/phenotype correlation.
The pathophysiology of congenital defects of glycosylation (CDG) is complex and the diagnosis has been a challenge because of the overlapping clinical signs and symptoms as well as a large number of disorders. Isoelectric focusing of transferrin has been used as a screening method but has limitations. Individual enzyme or molecular genetic tests have been difficult to perform. In this study, we aimed to describe CDG patients who were referred to from different departments either without a preliminary diagnosis or suspected to have a genetic disorder other than CDG. The patients were diagnosed mainly with a 450 gene next-generation DNA sequencing panel for inborn errors of metabolism, which also included 25 genes for CDG. A total of 862 patients were investigated with the panel, whereby homozygous (10) or compound heterozygous (4) mutations were found in a total of 14 (1.6%) patients. A total of 13 different mutations were discovered, 10 of them being novel. Interestingly,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.