Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices.
Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser's relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample's surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.
A breakthrough in the development of 4D scanning ultrafast electron microscopy is described for real-time and space imaging of secondary electron energy loss and carrier diffusion on the surface of an array of nanowires as a model system, providing access to a territory that is beyond the reach of either static electron imaging or any time-resolved laser spectroscopy.
Surface trap states in copper indium gallium
selenide semiconductor nanocrystals (NCs), which serve as undesirable
channels for nonradiative carrier recombination, remain a great challenge
impeding the development of solar and optoelectronics devices based
on these NCs. In order to design efficient passivation techniques
to minimize these trap states, a precise knowledge about the charge
carrier dynamics on the NCs surface is essential. However, selective
mapping of surface traps requires capabilities beyond the reach of
conventional laser spectroscopy and static electron microscopy; it
can only be accessed by using a one-of-a-kind, second-generation four-dimensional
scanning ultrafast electron microscope (4D S-UEM) with subpicosecond
temporal and nanometer spatial resolutions. Here, we precisely map
the collective surface charge carrier dynamics of copper indium gallium
selenide NCs as a function of the surface trap states before and after
surface passivation in real space and time using S-UEM. The time-resolved
snapshots clearly demonstrate that the density of the trap states
is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore,
the removal of trap states and elongation of carrier lifetime are
confirmed by the increased photocurrent of the self-biased photodetector
fabricated using the shelled NCs.
Anodically fabricated tantalum oxide (Ta2O5) nanorod array carpets are converted into the corresponding tantalum oxynitride (TaON) through nitridation in an ammonia atmosphere. The measured optical bandgap energy of TaON is ∼2.3 eV, which is also confirmed via the density functional theory calculations. When used to photoelectrochemically split water (AM 1.5G illumination, 1 M KOH, and 0.6 V applied DC bias), the multilayer nanorod films show visible-light incident photon conversion efficiencies (IPCE) as high as 7.5%. The enhanced photochemical activity is discussed in terms of the ordered one-dimensional morphology as well as the electron effective mass in TaON and Ta2O5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.