Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been identified in 89 countries. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores on the hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more likely to be infected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of cases. Moreover, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard.
(1) Background: The monkeypox virus (MPV) is a double-stranded DNA virus belonging to the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. It was called monkeypox because it was first discovered in monkeys, in a Danish laboratory, in 1958. However, the actual reservoir for MPV is still unknown. (2) Methods and Results: We have reviewed the existing literature on the options for Monkeypox virus. There are three available vaccines for orthopoxviruses—ACAM2000, JYNNEOS, and LC16—with the first being a replicating vaccine and the latter being non- or minimally replicating. (3) Conclusions: Smallpox vaccinations previously provided coincidental immunity to MPV. ACAM2000 (a live-attenuated replicating vaccine) and JYNNEOS (a live-attenuated, nonreplicating vaccine) are two US FDA-approved vaccines that can prevent monkeypox. However, ACAM2000 may cause serious side effects, including cardiac problems, whereas JYNNEOS is associated with fewer complications. The recent outbreaks across the globe have once again highlighted the need for constant monitoring and the development of novel prophylactic and therapeutic modalities. Based on available data, there is still a need to develop an effective and safe new generation of vaccines specific for monkeypox that are killed or developed into a mRNA vaccine before monkeypox is declared a pandemic.
Monkeypox is a rare disease which is rising nowadays in different countries since the first case in the UK was diagnosed on May 6, 2022, by the United Kingdom (UK) Health Security Agency. Then more than 12,500 cases were identified in over 68 countries up to July 18, 2022. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores in hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more liable to be affected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of the cases. Also, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard.
Numerous complications following COVID-19 vaccination has been reported in the literature, with an increasing body of evidence reporting vaccination-associated uveitis (VAU). In this systematic review, we searched six electronic databases for articles reporting the occurrence of VAU following COVID-19 vaccination. Data were synthesized with emphasis on patients’ characteristics [age, gender], vaccination characteristics [type, dose], and outcome findings [type, nature, laterality, course, location, onset, underlying cause, and associated findings]. Data are presented as numbers (percentages) for categorical data and as mean (standard deviation) for continuous data. Sixty-five studies were finally included [43 case reports, 16 case series, four cohort, one cross-sectional, and one registry-based study]. VAU occurred in 1526 cases, most commonly in females (68.93%) and middle-aged individuals (41–50 years: 19.71%), following the first dose (49.35%) of vaccination, especially in those who received Pfizer (77.90%). VAU occurred acutely (71.77%) as an inflammatory reaction (88.29%) in unilateral eyes (77.69%), particularly in the anterior portion of the uvea (54.13%). Importantly, most cases had a new onset (69.92%) while only a limited portion of cases had a reactivation of previous uveitis condition. In conclusion, although rare, uveitis following COVID-19 vaccination should be considered in new-onset and recurrent cases presenting with either acute or chronic events.
Background and Objective Nitazoxanide, a US Food and Drug Administration-approved antiparasitic agent, was reported to be effective in treating coronavirus disease 2019 (COVID-19). The lack of effective and precise treatments for COVID-19 infection earlier in the pandemic forced us to depend on symptomatic, empirical, and supportive therapy, which overburdened intensive care units and exhausted hospital resources. Therefore, the aim of this systematic review and meta-analysis was to assess the efficacy and safety of nitazoxanide for COVID-19 treatment. Methods A systematic review and meta-analysis synthesizing relevant randomized controlled trials from six databases (MedRxiv, WOS, SCOPUS, EMBASE, PubMed, and CENTRAL) until 17 May 2022 was conducted. Risk ratio (RR) for dichotomous outcomes was used and data with a 95% confidence interval (CI) are presented. The protocol was registered in PROSPERO with ID: CRD42022334658. Results Six randomized controlled trials with 1412 patients were included in the analysis. Nitazoxanide was effective in accelerating viral clearance compared with placebo (RR: 1.30 with 95% CI 1.08, 1.56, p = 0.006) and reducing oxygen requirements (RR: 0.48 with 95% CI 0.39, 0.59, p = 0.00001), but we found no difference between nitazoxanide and placebo in improving clinical resolution (RR: 1.01 with 95% CI 0.94, 1.08, p = 0.88), reducing the mortality rate (RR: 0.88 with 95% CI 0.4, 1.91, p = 0.74), and intensive care unit admission (RR: 0.69 with 95% CI 0.43, 1.13, p = 0.14). Moreover, nitazoxanide was as safe as placebo (RR: 0.9 with 95% CI 0.72, 1.12, p = 0.34). Conclusions Compared with placebo, nitazoxanide was effective in expediting viral clearance and decreasing oxygen requirements. However, there was no difference between nitazoxanide and placebo regarding clinical response, all-cause mortality, and intensive care unit admission. Therefore, more large-scale studies are still needed to ascertain the clinical applicability of nitazoxanide in COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s40261-022-01213-y.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.