The study suggests that a new Haeckelite structure of boron nitride may act as an excellent material with ultrafast recovery time for sensing and DNA sequencing applications in future.
Understanding the interactions between biomolecules and boron nitride nanostructures is key for their use in nanobiotechnology and medical engineering. In this study, we investigated the adsorption of nucleobases adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) over armchair and zigzag boron nitride nanoribbons (BNNR) using density functional theory to define the applicability of BNNR for the sensing of nucleobases and DNA sequencing. To appropriately account for dispersion, the van der Waals forces (DFT-D2)-type method developed by Grimme was also included in the calculations. The calculated adsorption energy suggests the following order of adsorption for A-BNNR and Z-BNNR with the nucleobases: G > T > A > U > C and G > C > A > T > U, respectively. The origin of the binding of the different nucleobases with BNNR was analysed and π-π stacking was found to be responsible. In addition, the electronic properties, density of states and work function significantly vary after adsorption. These analyses indicate different binding natures for different nucleobases and BNNRs. Thus, this study demonstrates that BNNR can be applied as biosensors for the detection of nucleobases, which are constituents of DNA and RNA. Furthermore, analysis of electronic properties and adsorption energies will play a key role in targeted drug delivery, enzyme activities and genome sequencing. Our results indicate that BNNRs have better adsorption capacity than graphene and boron nitride nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.