This paper presents a unique integrated approach to meter placement and state estimation to ensure the network observability of active distribution systems. It includes observability checking, minimum measurement utilization, network state estimation, and trade-off evaluation between the number of real measurements used and the accuracy of the estimated state. In network parameter estimation, observability assessment is a preliminary task. It is handled by data analysis and filtering followed by calculation of the triangular factors of the singular, symmetric gain matrix using an algebraic method. Usually, to cover the deficiency of essential real measurements in distribution systems, huge numbers of virtual measurements are used. These pseudo measurements are calculated values, which are based on the network parameters, real measurements, and forecasted load/generation. Due to the application of a huge number of pseudo-measurements, large margins of error exists in the calculation phase. Therefore, there is still a high possibility of having large errors in estimated states, even though the network is classified as being observable. Hence, an integrated approach supported by forecasting is introduced in this work to overcome this critical issue. Finally, estimation of the trade-off in accuracy with respect to the number of real measurements used has been evaluated in order to justify the method’s practical application. The proposed method is applied to a Danish network, and the results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.