Thalassemia is an autosomal recessive genetic disorder that affects the beta or alpha subunits of the hemoglobin structure. Thalassemia is classified as a hypochromic microcytic anemia and a definitive diagnosis of thalassemia is made by genetic testing of the alpha and beta genes. Thalassemia carries similar features to the other diseases that lead to microcytic hypochromic anemia, particularly iron deficiency anemia (IDA). Therefore, distinguishing between thalassemia and other causes of microcytic anemia is important to help in the treatment of the patients. Different indices and algorithms are used based on the complete blood count (CBC) parameters to diagnose thalassemia. In this article, we review how effective artificial intelligence is in aiding in the diagnosis and classification of thalassemia.
Thrombocytopenia is a medical condition where blood platelet count drops very low. This drop in platelet count can be attributed to many causes including medication, sepsis, viral infections, and autoimmunity. Clinically, the presence of thrombocytopenia might be very dangerous and is associated with poor outcomes of patients due to excessive bleeding if not addressed quickly enough. Hence, early detection and evaluation of thrombocytopenia is essential for rapid and appropriate intervention for these patients. Since artificial intelligence is able to combine and evaluate many linear and nonlinear variables simultaneously, it has shown great potential in its application in the early diagnosis, assessing the prognosis and predicting the distribution of patients with thrombocytopenia. In this review, we conducted a search across four databases and identified a total of 13 original articles that looked at the use of many machine learning algorithms in the diagnosis, prognosis, and distribution of various types of thrombocytopenia. We summarized the methods and findings of each article in this review. The included studies showed that artificial intelligence can potentially enhance the clinical approaches used in the diagnosis, prognosis, and treatment of thrombocytopenia.
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by dysregulated growth and the proliferation of myeloid cells in the bone marrow caused by the BCR-ABL1 fusion gene. Clinically, CML demonstrates an increased production of mature and maturing granulocytes, mainly neutrophils. When a patient is suspected to have CML, peripheral blood smears and bone marrow biopsies may be manually examined by a hematologist. However, confirmatory testing for the BCR-ABL1 gene is still needed to confirm the diagnosis. Despite tyrosine kinase inhibitors (TKIs) being the mainstay of treatment for patients with CML, different agents should be used in different patients given their stage of disease and comorbidities. Moreover, some patients do not respond well to certain agents and some need more aggressive courses of therapy. Given the innovations and development that machine learning (ML) and artificial intelligence (AI) have undergone over the years, multiple models and algorithms have been put forward to help in the assessment and treatment of CML. In this review, we summarize the recent studies utilizing ML algorithms in patients with CML. The search was conducted on the PubMed/Medline and Embase databases and yielded 66 full-text articles and abstracts, out of which 11 studies were included after screening against the inclusion criteria. The studies included show potential for the clinical implementation of ML models in the diagnosis, risk assessment, and treatment processes of patients with CML.
Philadelphia-negative (Ph-) myeloproliferative neoplasms (MPNs) are a group of hematopoietic malignancies identified by clonal proliferation of blood cell lineages and encompasses polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The clinical and laboratory features of Philadelphia-negative MPNs are similar, making them difficult to diagnose, especially in the preliminary stages. Because treatment goals and progression risk differ amongst MPNs, accurate classification and prognostication are critical for optimal management. Artificial intelligence (AI) and machine learning (ML) algorithms provide a plethora of possible tools to clinicians in general, and particularly in the field of malignant hematology, to better improve diagnosis, prognosis, therapy planning, and fundamental knowledge. In this review, we summarize the literature discussing the application of AI and ML algorithms in patients with diagnosed or suspected Philadelphia-negative MPNs. A literature search was conducted on PubMed/MEDLINE, Embase, Scopus, and Web of Science databases and yielded 125 studies, out of which 17 studies were included after screening. The included studies demonstrated the potential for the practical use of ML and AI in the diagnosis, prognosis, and genomic landscaping of patients with Philadelphia-negative MPNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.