A universal stellar initial mass function (IMF) should not be expected from theoretical models of star formation, but little conclusive observational evidence for a variable IMF has been uncovered. In this paper, a parameterization of the IMF is introduced into photometric template fitting of the COSMOS2015 catalog. The resulting best-fit templates suggest systematic variations in the IMF, with most galaxies exhibiting top-heavier stellar populations than in the Milky Way. At fixed redshift, only a small range of IMFs are found, with the typical IMF becoming progressively top-heavier with increasing redshift. Additionally, subpopulations of ULIRGs, quiescent and star-forming galaxies are compared with predictions of stellar population feedback and show clear qualitative similarities to the evolution of dust temperatures.
The stellar initial mass function (IMF) is predicted to depend upon the temperature of gas in star-forming molecular clouds. The introduction of an additional parameter, T
IMF, into photometric template fitting suggests most galaxies obey an IMF top heavier than the Galactic IMF. The implications of the revised fit on mass function, quiescence, and turnoff are discussed. At all redshifts, the highest-mass galaxies become quiescent first with the turnoff mass decreasing toward the present. The synchronous turnoff mass across galaxies suggests quiescence is driven by universal mechanisms rather than by stochastic or environmental processes.
The stellar initial mass function (IMF) is predicted to depend upon the temperature of gas in star-forming molecular clouds. The introduction of an additional parameter, T
IMF, into photometric template fitting, allows galaxies to be fit with a range of IMFs. Three surprising new features appear: (1) most star-forming galaxies are best fit with a bottom-lighter IMF than the Milky Way; (2) most star-forming galaxies at fixed redshift are fit with a very similar IMF; and (3) the most-massive star-forming galaxies at fixed redshift instead exhibit a less bottom-light IMF, similar to that measured in quiescent galaxies. Additionally, since stellar masses and star formation rates both depend on the IMF, these results slightly modify the resulting relationship, while yielding similar qualitative characteristics to previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.