Together with the daily variation of load demand in power grids, the continuous integration of offshore and onshore wind farms to feed the grid with green energy has recently led to a severe frequency stability issue due to the extra variation in the generation side. Hence, wind turbines (WTs), among other renewable energy units are required to regulate their output power to mitigate the fluctuation in generated power and support frequency stability. In this paper, model predictive control (MPC) is implemented in an adaptive way to operate WT in de-loading mode under wind disturbances. In addition, to get comprehensive operation of WTs and meet grid code requirements; we present a new grid-forming controller in the WT rotor side converter to emulate the inherent synchronizing and load sharing property of conventional generators. The limitations of rotor speed and rotor side converter are considered in the proposed control approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.