Pulicaria genus (fleabane) is characterized by its fragrant odor due to the presence of essential oil (EO). According to the literature reviews, the EO of Pulicaria somalensis O.Hoffm. (Shie) is still unexplored. For the first time, 71 compounds were characterized in EO derived from above-ground parts of P. somalensis collected from Saudi Arabia. Sesquiterpenes represented the main components (91.8%), along with minor amounts of mono-, diterpenes, and hydrocarbons. Juniper camphor (24.7%), α-sinensal (7.7%), 6-epi-shyobunol (6.6%), α-zingiberene (5.8%), α-bisabolol (5.3%), and T-muurolol (4.7%) were characterized as main constituents. The correlation analysis between different Pulicaria species showed that P. somalensis has a specific chemical pattern of the EO, thereby no correlation was observed with other reported Pulicaria species. The EO showed significant allelopathic activity against the weeds of Dactyloctenium aegyptium (L.) Willd. (crowfoot grass) and Bidens pilosa L. (hairy beggarticks). The IC50 value on the germination of D. aegyptium was double that of B. pilosa. The IC50 values on the root growth of B. pilosa and D. aegyptium were 0.6 mg mL−1 each, while the shoot growths were 1.0 and 0.7 mg mL−1, respectively. This variation in the activity could be attributed to the genetic characteristics of the weeds. Moreover, the EO exhibited significant antioxidant effects compared to ascorbic acid. Further studies are necessary to verify if these biological activities of the EO could be attributable to its major compounds.
Salt stress is one of the most significant abiotic stresses that substantially negatively impact plant growth and productivity. However, a slew of research thus far has investigated the ameliorating properties of arbuscular mycorrhizal (AM) symbiosis and their potential to improve plant tolerance to salt stress. The present study aimed to evaluate and compare the role of mycorrhizal inocula obtained from Sabkha (S-AMF) and non-Sabkha (NS-AMF) habitats of Saudi Arabia on the morphological, physiological, and biochemical behaviors of the Lasiurus scindicus plant. For this reason, arbuscular mycorrhizal fungi (AMF) isolated from Sabkha and non-Sabkha soils were treated with salinity-exposed L. scindicus. The results revealed that the AMF-treated plants had higher growth metrics and increased synthesis of photosynthetic pigments, which were reduced by salt stress. Furthermore, the application of AM symbiosis induced an increase in the activities of the antioxidant system, which resulted in a reduction of the plant oxidative damage. It was also found that the increased accumulation of proline and phenols acted as a protective measure. However, plants inoculated with S-AMF had the highest ameliorating responses on all the studied parameters compared to NS-AMF. This could be attributed to the presence of habitat-specific AMF, which may have induced adaptive plasticity in plants to tolerate or resist extreme salinity. However, further study in exploring the S-AMF diversity is needed to make it an ecofriendly choice for the restoration of salinity-affected ecosystems.
Off-road vehicle driving is considered as main contributor to land degradation in arid regions. This study examined the impact of off-road vehicles (ORV) on soil and vegetation in a natural recreational desert meadow of Raudhat Khuraim, Saudi Arabia. Vegetation canopy cover and plant height away from road tracks were assessed. Also, species density and canopy cover, bare ground cover and soil attributes were assessed in four microhabitats; tracks, inter-tracks, verges, and away from vehicle tracks (undisturbed natural areas). Results show that the cover of forbs and grasses was negatively associated with distance from road verges. It was observed that the height of woody species responded negatively to distance away from tracks. Cover of native species decreased under verge, inter-track and track microhabitats giving more opportunity for weeds to flourish. Bare ground was highest (60.7%) in tracks. ORV impact on soil bulk density was clear with an increase of 38% under tracks compared to soils of undisturbed natural vegetation and a similar decrease in porosity was observed. On the other hand, soil electrical conductivity was significantly higher (5.45 mS cm−1) under disturbance compared to 1.32 mS cm−1 in undisturbed natural vegetation. Organic matter and nitrogen were not affected significantly by ORV disturbance. The results emphasize that managing off-road vehicle driving is essential for conserving native vegetation.
Sabkhas are unique, highly saline ecosystems, where specially adapted plants can grow. Aeluropus lagopoides (L.) Thwaites is a halophytic forage plant growing in salt marsh habitats of inland and coastal sabkhas of Saudi Arabia. The present study provides an analysis of vegetation composition and distribution of the A. lagopoides community in five different regions within Saudi Arabia, emphasizing the environmental factors that affect species distribution. The floristic survey revealed the presence of 48 species, belonging to 26 families. Poaceae, Chenopodiaceae, Mimosaceae, Zygophyllaceae, and Asteraceae are the largest families (50% of total species). Phanerophyte, followed by chamaephytes, are the most frequent forms, indicating a typical saline desert life-form spectrum. The vegetation analysis revealed the dominance of A. lagopoides in all locations, where it was the most dominant species in Qareenah, Qaseem, and Salwa locations, and the second most dominant species in Jouf and Jizan locations. The flourishment of this halophytic grass within a wide soil range in sabkhas revealed its adaptability to the harsh environment, which could be ascribed to its structural adaptations and modifications, as well as the phenotypic plasticity. The Qareenah and Qaseem locations attained the highest species richness and evenness, while the Jizan location was the least diverse. Within the studied locations, other highly salt-tolerant species were determined with high abundances, such as Suaeda aegyptiaca (Hasselq.) Zohary, Zygophyllum album L.f., Tamarix nilotica (Ehrenb.) Bunge, Cressa cretica L., and Salicornia europaea L. The soil analysis showed a significant variation for all parameters among the studied locations, except for pH, chloride, and clay content. The Qaseem location revealed the highest values of most soil parameters, while the Jizan location showed the lowest. The canonical correspondence analysis (CCA) showed that the community structure and diversity are mainly affected by the soil salinity and moisture. Due to the economic potentialities of A. lagopoides as a forage plant and sand stabilizer, the conservation of its habitats is of vital importance. In addition, this grass could be integrated as a promising forage candidate that can be planted in saline-affected areas, even in the summer dry season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.