Several homology-dependent pathways can repair potentially lethal DNA double-strand breaks (DSBs). The first step common to all homologous recombination reactions is the 5′-3′ degradation of DSB ends that yields 3′ single-stranded DNA (ssDNA) required for loading of checkpoint and recombination proteins. The Mre11-Rad50-Xrs2/NBS1 complex and Sae2/CtIP initiate end resection while long-range resection depends on the exonuclease Exo1 or the helicase-topoisomerase complex Sgs1-Top3-Rmi1 with the endonuclease Dna21-6. DSBs occur in the context of chromatin, but how the resection machinery navigates through nucleosomal DNA is a process that is not well understood7. Here, we show that the yeast S. cerevisiae Fun30 protein and its human counterpart SMARCAD18, two poorly characterized ATP-dependent chromatin remodelers of the Snf2 ATPase family, are novel factors that are directly involved in the DSB response. Fun30 physically associates with DSB ends and directly promotes both Exo1- and Sgs1-dependent end resection through a mechanism involving its ATPase activity. The function of Fun30 in resection facilitates repair of camptothecin (CPT)-induced DNA lesions, and it becomes dispensable when Exo1 is ectopically overexpressed. Interestingly, SMARCAD1 is also recruited to DSBs and the kinetics of recruitment is similar to that of Exo1. Loss of SMARCAD1 impairs end resection, recombinational DNA repair and renders cells hypersensitive to DNA damage resulting from CPT or PARP inhibitor treatments. These findings unveil an evolutionarily conserved role for the Fun30 and SMARCAD1 chromatin remodelers in controlling end resection, homologous recombination and genome stability in the context of chromatin.
The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair protein Rad52 into a single focus. Moreover, we show that eroded telomeres, although remaining at the nuclear periphery, move to the nuclear pore complex. Our results link the DNA damage response at eroded telomeres to changes in subnuclear localization and suggest the existence of collapsed replication forks at eroded telomeres.
The cell cycle has been extensively studied in various organisms, and the recent access to an overwhelming amount of genomic data has given birth to a new integrated approach called comparative genomics. Comparing the cell cycle across species shows that its regulation is evolutionarily conserved; the best-known example is the pivotal role of cyclin-dependent kinases in all the eukaryotic lineages hitherto investigated. Interestingly, the molecular network associated with the activity of the CDK-cyclin complexes is also evolutionarily conserved, thus, defining a core cell cycle set of genes together with lineage-specific adaptations. In this paper, we describe the core cell cycle genes of Ostreococcus tauri, the smallest free-living eukaryotic cell having a minimal cellular organization with a nucleus, a single chloroplast, and only one mitochondrion. This unicellular marine green alga, which has diverged at the base of the green lineage, shows the minimal yet complete set of core cell cycle genes described to date. It has only one homolog of CDKA, CDKB, CDKD, cyclin A, cyclin B, cyclin D, cyclin H, Cks, Rb, E2F, DP, DEL, Cdc25, and Wee1. We have also added the APC and SCF E3 ligases to the core cell cycle gene set. We discuss the potential of genome-wide analysis in the identification of divergent orthologs of cell cycle genes in different lineages by mining the genomes of evolutionarily important and strategic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.