Bismuth ferrite (BiFeO 3 ) is regarded as an important ABO 3 perovskite in the areas of energy storage and electronics. A high-performance novel MgBiFeO 3 -NC nanomagnetic composite (MBFO-NC) electrode was prepared using a perovskite ABO 3 -inspired method as a supercapacitor for energy storage. The electrochemical behavior of the perovskite BiFeO 3 has been enhanced by magnesium ion doping in the basic aquatic electrolyte as the A-site. H 2 -TPR revealed that the doping of Mg 2+ ions at the Bi 3+ sites minimizes the oxygen vacancy content and improves the electrochemical characteristics of MgBiFeO 3 -NC. Various techniques were used to confirm the phase, structure, surface, and magnetic properties of the MBFO-NC electrode. The prepared sample showed an enhanced mantic performance and specific area with an average nanoparticle size of ∼15 nm. The electrochemical behavior of the three-electrode system was shown by cyclic voltammetry to have a significant specific capacity of 2079.44 F/g at 30 mV/s in 5 M KOH electrolyte. GCD analysis at a 5 A/g current density also showed an enhanced capacity improvement of 2159.88 F/g, which is 3.4× higher than that of pristine BiFeO 3 . At the power density of 5284.83 W/kg, the constructed MBFO-NC//MBFO-NC symmetric cell showed an exceptional energy density of 730.04 W h/kg. The MBFO-NC//MBFO-NC symmetric cell was employed as a direct practical application of the electrode material to entirely brighten the laboratory panel, which had 31 LEDs. This work proposes the utilization of duplicate cell electrodes made of MBFO-NC//MBFO-NC in portable devices for daily use.
Agro-waste management processes are evolving through the development of novel experimental approaches to understand the mechanisms in reducing their pollution levels efficiently and economically from industrial effluents. Agro-industrial effluent (AIE) from biorefineries that contain high concentrations of COD and color are discharged into the ecosystem. Thus, the AIE from these biorefineries requires treatment prior to discharge. Therefore, the effectiveness of a continuous flow bioreactor system (CFBS) in the treatment of AIE using hybrid waste sludge biochar (HWSB) was investigated. The use of a bioreactor with hydraulic retention time (HRT) of 1–3 days and AIE concentrations of 10–50% was used in experiments based on a statistical design. AIE concentration and HRT were optimized using response surface methodology (RSM) as the process variables. The performance of CFBS was analyzed in terms of COD and color removal. Findings indicated 76.52% and 66.97% reduction in COD and color, respectively. During biokinetic studies, the modified Stover models were found to be perfectly suited for the observed measurements with R2 values 0.9741 attained for COD. Maximum contaminants elimination was attained at 30% AIE and 2-day HRT. Thus, this study proves that the HWSB made from biomass waste can potentially help preserve nonrenewable resources and promote zero-waste attainment and principles of circular economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.