In this paper, we developed a model that suggests the use of robots in identifying COVID-19-positive patients and which studied the effectiveness of the government policy of prohibiting migration of individuals into their countries especially from those countries that were known to have COVID-19 epidemic. Two compartmental models consisting of two equations each were constructed. The models studied the use of robots for the identification of COVID-19-positive patients. The effect of migration ban strategy was also studied. Four biologically meaningful equilibrium points were found. Their local stability analysis was also carried out. Numerical simulations were carried out, and the most effective strategy to curtail the spread of the disease was shown.
The rapid increase in data traffic caused by the proliferation of smart devices has spurred the demand for extremely large-capacity wireless networks. Thus, faster data transmission rates and greater spectral efficiency have become critical requirements in modern-day networks. The ubiquitous 5G is an end-to-end network capable of accommodating billions of linked devices and offering high-performance broadcast services due to its several enabling technologies. However, the existing review works on 5G wireless systems examined only a subset of these enabling technologies by providing a limited coverage of the system model, performance analysis, technology advancements, and critical design issues, thus requiring further research directions. In order to fill this gap and fully grasp the potential of 5G, this study comprehensively examines various aspects of 5G technology. Specifically, a systematic and all-encompassing evaluation of the candidate 5G enabling technologies was conducted. The evolution of 5G, the progression of wireless mobile networks, potential use cases, channel models, applications, frequency standardization, key research issues, and prospects are discussed extensively. Key findings from the elaborate review reveal that these enabling technologies are critical to developing robust, flexible, dependable, and scalable 5G and future wireless communication systems. Overall, this review is useful as a resource for wireless communication researchers and specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.