BackgroundThe leishmaniasis is a group of diseases caused by intracellular haemoflagellate protozoan parasites of the genus Leishmania. Leishmaniasis has diverse clinical manifestations; cutaneous leishmaniasis (CL) is the most common form of leishmaniasis which is responsible for 60% of disability-adjusted life years. CL is endemic in Yemen. In Shara’b there is no reference study available to identify the prevalence of endemic diseases and no investigation has been conducted for diagnosing the diseases.MethodsThis study was conducted in villages for CL which collected randomly. The study aimed at investigating the epidemiological factors of CL in Shara’b by using questioner. Symptoms of lesions in patients suffering from CL, confirmed by laboratory tests, gave a new evidence of biochemical diagnosis in 525 villagers aged between 1 and 60 years old. Venous bloods were collected from 99 patients as well as from 51 control after an overnight fast.ResultsThe percentage prevalence of CL was found 18.8%. The prevalence rate of infection among males (19.3%) was higher than females (18.40%). Younger age group (1–15) had a higher prevalence rate (20.3%) than the other age groups. Furthermore, the population with no formal education had the higher rate of infection (61% of the total). A significant increase of serum malondialdehyde (P < 0.001) in CL patients was obtained. The highest level of MDA may be due to over production of ROS and RNS results in oxidative stress and the acceleration of lipid peroxidation in CL patients.ConclusionsThere were high prevalence rates of CL in Shara’b. The patient who had CL has been found with many changes in some biochemical levels. This study provides a clear indication on the role of MDA as an early biochemical marker of peroxidation damage occurring during CL. Increased uric acid, and catalase activity was provided of free radical.
Strengthening reinforced concrete (RC) beams with openings by using aramid fiber reinforcement polymers (AFRP) on the beams' surfaces offers a useful solution for upgrading concrete structures to carry heavy loads. This paper presents a repairing technique of the AFRP sheets that effectively strengthens RC beams, controls both the failure modes and the stress distribution around the beam chords and enhances the serviceability (deflection produced under working loads be sufficiently small and cracking be controlled) of pre-cracked RC beams with openings. To investigate the possible damage that was caused by the service load and to simulate the structure behavior in the site, a comprehensive experimental study was performed. Two unstrengthened control beams, four beams that were pre-cracked before the application of the AFRP sheets and one beam that was strengthened without pre-cracking were tested. Cracking was first induced, followed by repair using various orientations of AFRP sheets, and then the beams were tested to failure. This load was kept constant during the strengthening process. The results show that both the preexisting damage level and the FRP orientation have a significant effect on strengthening effectiveness and failure mode. All of the strengthened specimens exhibited higher capacities with capacity enhancements ranging from 21.8 to 66.4%, and the crack width reduced by 25.6-82.7% at failure load compared to the control beam. Finally, the authors present a comparison between the experimental results and the predictions using the ACI 440.2R-08 guidelines.
The use of externally bonded fiber reinforced polymer (FRP) sheets, strips or steel plates is a modern and convenient way for strengthening of reinforced concrete (RC) beams. Several researches have been carried out on reinforced concrete beams with web openings that strengthened using fiber reinforced polymer composite. Majority of researches focused on shear strengthening compared with flexural strengthening, while others studied the effect of openings on shear and flexural separately with various loading. This paper investigates the impact of more than sixty articles on opening reinforced concrete beams with and without strengthening by fiber reinforcement polymers FRP. Moreover, important practical issues, which are contributed in shear strengthening of beams with different strengthening techniques, such as steel plate and FRP laminate, and detailed with various design approaches are discussed. Furthermore, a simple technique of applying fiber reinforced polymer contributed with steel plate for strengthening the RC beams with openings under different load application is concluded. Directions for future research based on the existing gaps of the present works are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.