Background: COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic affecting approximately 490,000 people and accounting for more than 22,000 deaths and has no generally cure. Here, the recently resolved 3D structure of SARS-CoV-2 receptor binding domain (RBD) in complex with its receptor-the angiotensin converting enzyme-2 (ACE-2) have provided the basis for screening chemical database for novel entry inhibitors. Methods: Molecular docking protocols have been used to rapidly screen FDA database for high affinity interaction at the SARS-CoV-2-RBD/ACE-2 interface. One of the top candidate ubrogepant has been using atomistic molecular dynamics simulation method. Results: Molecular docking result showed that ubrogepant (UBR) and darunavir have binding energies of -10.4 kcal/mol. MMPBSA free energy analyses of UBR bound to RBD, ACE-2 and RBD/ACE-2 revealed RBD/ACE-2 > ACE-2 > RBD preference. Network analysis showed that interaction captured in the crystal structure were disrupted in UBR-bound state, hydration of the interface and increased atomic fluctuation within the RBD oligomerization interface and ACE-2 zinc binding site. Conclusions: The ability of ubrogepant to rupture the interaction at the RBD/ACE-2 interface residues of SARS-CoV-2 RBD/ACE-2 complex may result in loss of protein function with direct implication on oligomerization formation in RBD and loss of function in ACE-2 thus, making binding, cellular receptor recognition impossible. General Significance: Ubrogepant represents a new therapeutic candidate in the fight against COVID-19, as it binds with relatively high affinity with free RBD, ACE-2 receptor and SARS-CoV-2 RBD/ACE-2 complex based on binding affinity calculations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.