The purpose of research to determine and contribute in more efficient services to geoinformation stakeholders, as well as to give positive impact on increasing income in geo business sector, voluntary based web system for online usage of geoinformation in Kosovo has been developed. The method used was puting in to one place many sourcec via WMS and WFS services, by creating thematic SDI, in order to have online system with dynamic data comming from official databases with update from last day on 5 pm. System is open for usage by all interested parts, however official registration is required. It contains geoinformation from many databases such as cadastral, orthophoto, municipal, and basemaps from open layers. The results show that the system is extendable and it is permanently including new datasets based on the user requirements. All available data is linked via web services, which gives an opportunity to users to use the updated version of datasets as they are published by responsible institution via www (world wide web). Keywords: web map, geoportal, geoinformation, web services, Kosovo References Alameh. N, (2010). Service chaining of interoperable Geographic Information Web Services. Global Science and Technology. Greenbelt, USA. Brimicombe, A.J. (2002). GIS-where are the frontiers now. GIS 2002. Bahrain. Bryukhanova, E. A., Krupochkin, Y. P., & Rygalova, M. V. (2018). Geoinformation technologies in the reconstruction of the social space of siberian cities at the turn of the 19–20th centuries (case study of the city of tobolsk). Journal of Siberian Federal University - Humanities and Social Sciences, 11(8), 1229-1242. doi:10.17516/1997-1370-0303 Chaudhuri, S. (2015). Application of Web Based Geographical Information Systems in e-business. Maldives. Davis, C.A. and Alves L.L. (2007). Geospatial web services, Vicosa, Brazil. ESRI. (2003). Spatial Data Standards and GIS interoperability. White paper. ESRI. CA. USA. Ferdousi, . and Al-Faisal, A. (2018). Urban and regional planning. Rajshahi University of Engineering and Technology. Rajshahi. Bangladesh. Gitis, V., Derendyaev, A., & Weinstock, A. (2016). Web-based GIS technologies for monitoring and analysis of spatio-temporal processes. International Journal of Web Information Systems, 12(1), 102-124. doi:10.1108/IJWIS-10-2015-0032 Glasze, G., & Perkins, C. (2015). Social and political dimensions of the OpenStreetMap project: Towards a critical geographical research agenda doi:10.1007/978-3-319-14280-7_8 Henzen, C. (2018). Building a framework of usability patterns for web applications in spatial data infrastructures. ISPRS International Journal of Geo-Information, 7(11) doi:10.3390/ijgi7110446 Idrizi, B. (2009). Developing of National Spatial Data Infrastructure of Macedonia according to global standardization (GSDI and INSPIRE) and local status. Conference of Nikodinovski. Skopje. Macedonia. Idrizi, B. (2018). General Conditions of Spatial Data Infrastructure. International Journal on Natural and Engineering Sciences. Turkey. Idrizi, B. Sulejmani, V. Zimeri, Z. (2018). Multi-scale map for three levels of spatial planning data sets for the municipality of Vitia in Kosova. 7th ICC&GIS conference. Sozopol. Bulgaria. Mwange, C., Mulaku, G. C., & Siriba, D. N. (2018). Reviewing the status of national spatial data infrastructures in africa. Survey Review, 50(360), 191-200. doi:10.1080/00396265.2016.1259720 Nikolov, B. P., Zharkikh, J. I., Soloviev, A. A., Krasnoperov, R. I., & Agayan, S. M. (2015). Integration of data mining methods for earth science data analysis in GIS environment. Russian Journal of Earth Sciences, 15(4) doi:10.2205/2015ES000559 Sahin, K. and Gumusay, M.U. (2008). Service oriented architecture based web services for geographic information systems. The international archives of the remote sensing, photogrammetry and spatial information sciences. Vol XXXVII. Beijing. China. Sayar, A. (2008). GIS service oriented architecture. Community grids laboratory. IN, USA. Shi, S. (2015). Design and development of an online geoinformation service delivery of geospatial models in the united kingdom. Environmental Earth Sciences, 74(10), 7069-7080. doi:10.1007/s12665-015-4243-8 Siles, G., Charland, A., Voirin, Y., & Bénié, G. B. (2019). Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Ecological Informatics, 52, 166-176. doi:10.1016/j.ecoinf.2019.05.011 Ummadi, P. (2008). Standards and Interoperability in GIS, Michigan State University. MI, USA. Vorobev, A. V., & Shakirova, G. R. (2016). Web-based geoinformation system for exploring geomagnetic field, its variations and anomalies doi:10.1007/978-3-319-29589-3_2 Walter, V., & Sörgel, U. (2018). Implementation, results, and problems of paid crowd-based geospatial data collection. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 86(3-4), 187-197. doi:10.1007/s41064-018-0058-z Copyright (c) 2019 Geosfera Indonesia Journal and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
The integration of spatial data analysis methods and thematic map models is an approach to reduce the negative impact of anthropogenic pressure on the environment due to mining and waste generation. The large amounts of industrial waste from mining in the Mitrovica region in northern Kosovo lead to serious environmental problems with organic and inorganic water and soil pollution. This study aims to design and establish a geospatial database for long-term environmental monitoring, provide analytical tools, and support appropriate management decisions by local authorities and agencies. The database contains topographical elements and ecological parameters collected from different national and open access international sources. All collected data have been analyzed, standardized and harmonized within the open-source QGIS ver.3 software. The results showed that in developed datasets were organized in different GIS layers and compiled several thematic maps. The designed database is unique by its architecture, providing an opportunity for periodical monitoring of the environment near the mining areas. Keywords: Environmental monitoring; Spatial database; Open source software; QGIS; Kosovo. Copyright (c) 2021 Geosfera Indonesia and Department of Geography Education, University of Jember This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
Abstract. The state Coordinate Reference System (CRS) of the Republic of North Macedonia (RNM) has been established a century ago, by the Military Geographic Institute of the Yugoslavia Kingdom. It is in official usage entire period up to day. In international public EPSG registry of geodetic datums, spatial reference systems, Earth ellipsoids, coordinate transformations and related units of measurement, CRS for RNM is recognizable within 3 EPSG codes 6204, 6316 and 8679.First code EPSG 6204 represents current state CRS for the entire country area, based on current law, however unfortunately this CRS is official by the law but it is not used for developing the official spatial data published in geoportals of Agency for Real Estate Cadastre (AREC) and NSDI geoportal of RNM. The second code EPSG 6316 is defined to be used for 6 countries of former Yugoslavia that covers area between 19.5°E up to 22.5°E longitude, which does not correspond with the practical and official usage of CRS for working with spatial data in RNM and CRS law definition in RNM. Third code EPSG 8679 has never been used in RNM, which covers eastern part of RNM and Serbia beginning from 22.5°E.Beside of problems with EPSG codes, default transformation parameters of EPSG 6316 have low accuracy and can not be used for data overlapping with open layers. Therefore, redefined new EPSG codes for state CRS of RNM are proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.