OBJECTIVETo describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010.RESEARCH DESIGN AND METHODSA total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years.RESULTSInsulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001).CONCLUSIONSThe CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient.
y These authors contributed equally.A nonspecific inflammatory and thrombotic reaction termed instant blood-mediated inflammatory reaction (IBMIR) has been reported when allogenic or xenogenic islets come into contact with blood. This reaction is known to cause significant loss of transplanted islets. We hypothesized that IBMIR occurs in patients undergoing total pancreatectomy followed by autologous islet transplantation (TP-AIT) and tested this hypothesis in 24 patients and in an in vitro model. Blood samples drawn during the peritransplant period showed a significant and rapid increase of thrombinanti-thrombin III complex (TAT) and C-peptide during islet infusion, which persisted for up to 3 h, along with a decreased platelet count. A concomitant increase in levels of inflammatory proteins IL-6, IL-8 and interferoninducible protein-10 was observed. An in vitro model composed of pure islets plus autologous blood also demonstrated significantly increased levels of TAT (p < 0.05), C-peptide (p < 0.05), tumor necrosis factoralpha (p < 0.05) and MCP-1 (p < 0.05), as well as strong tissue factor expression in islets. Islet viability decreased significantly but was rescued by the presence of low-molecular-weight dextran sulfate. In conclusion, AIT-induced elevation of TAT and destruction of islets suggests that IBMIR might occur during AIT. Modulating this process may help improve islet engraftment and the insulin independence rate in TP-AIT patients.
The homeodomain transcription factor Nkx6.1 plays an important role in pancreatic islet -cell development, but its effects on adult -cell function, survival, and proliferation are not well understood. In the present study, we demonstrated that treatment of primary rat pancreatic islets with a cytomegalovirus promoter-driven recombinant adenovirus containing the Nkx6.1 cDNA (AdCMV-Nkx6.1) causes dramatic increases in [methyl-3 H] thymidine and 5-bromo-2-deoxyuridine (BrdU) incorporation and in the number of cells per islet relative to islets treated with a control adenovirus (AdCMV-GAL), whereas suppression of Nkx6.1 expression reduces thymidine incorporation. Immunocytochemical studies reveal that >80% of BrdU-positive cells in AdCMVNkx6.1-treated islets are  cells. Microarray, real-time PCR, and immunoblot analyses reveal that overexpression of Nkx6.1 in rat islets causes concerted upregulation of a cadre of cell cycle control genes, including those encoding cyclins A, B, and E, and several regulatory kinases. Cyclin E is upregulated earlier than the other cyclins, and adenovirus-mediated overexpression of cyclin E is shown to be sufficient to activate islet cell proliferation. Moreover, chromatin immunoprecipitation assays demonstrate direct interaction of Nkx6.1 with the cyclin A2 and B1 genes. Overexpression of Nkx6.1 in rat islets caused a clear enhancement of glucosestimulated insulin secretion (GSIS), whereas overexpression of Nkx6.1 in human islets caused an increase in the level of [ 3 H]thymidine incorporation that was twice the control level, along with complete retention of GSIS. We conclude that Nkx6.1 is among the very rare factors capable of stimulating -cell replication with retention or enhancement of function, properties that may be exploitable for expansion of -cell mass in treatment of both major forms of diabetes.Type 1 diabetes results from autoimmune destruction of insulin-producing  cells in the islets of Langerhans, whereas type 2 diabetes involves loss of glucose-stimulated insulin secretion (GSIS) and a gradual diminution of -cell mass (45). Insulin injection therapy has been the standard treatment for type 1 diabetes since the discovery of the hormone more than 80 years ago. Islet transplantation has been investigated as an alternative to insulin injection, but a major obstacle to broad application of this approach has been an inadequate supply of human islets (21). Pharmacotherapy of type 2 diabetes includes administration of agents that enhance insulin secretion, but these drugs often lose efficacy over time and cause complications such as hypoglycemia (30). Moreover, no controlled strategy for restoration of -cell mass has been identified for the type 2 disease. Thus, a more complete understanding of the mechanisms that control islet -cell growth and function is required in order to develop more effective therapies for both major forms of diabetes.Several members of the homeodomain family of transcription factors, including Pdx1, Hb9/Hlxb9, Nkx2.2, Nkx6.1, Isl-1, Pax6, an...
The Collaborative Islet Transplant Registry (CITR) collects data on clinical islet isolations and transplants. This retrospective report analyzed 1017 islet isolation procedures performed for 537 recipients of allogeneic clinical islet transplantation in 1999–2010. This study describes changes in donor and islet isolation variables by era and factors associated with quantity and quality of final islet products. Donor body weight and BMI increased significantly over the period (p < 0.001). Islet yield measures have improved with time including islet equivalent (IEQ)/particle ratio and IEQs infused. The average dose of islets infused significantly increased in the era of 2007–2010 when compared to 1999–2002 (445.4 ± 156.8 vs. 421.3 ± 155.4 ×103 IEQ; p < 0.05). Islet purity and total number of β cells significantly improved over the study period (p < 0.01 and <0.05, respectively). Otherwise, the quality of clinical islets has remained consistently very high through this period, and differs substantially from nonclinical islets. In multivariate analysis of all recipient, donor and islet factors, and medical management factors, the only islet product characteristic that correlated with clinical outcomes was total IEQs infused. This analysis shows improvements in both quantity and some quality criteria of clinical islets produced over 1999–2010, and these parallel improvements in clinical outcomes over the same period.
Poor efficacy is one of the issues for clinical islet transplantation. Recently, we demonstrated that pancreatic ductal preservation significantly improved the success rate of islet isolation; however, two transplants were necessary to achieve insulin independence. In this study, we introduced iodixanol-based purification, thymoglobulin induction, and double blockage of IL-1β and TNF-α as well as sirolimus-free immunosuppression to improve the efficacy of clinical islet transplantation. Nine clinical-grade human pancreata were procured. Pancreatic ductal preservation was performed using ET-Kyoto solution in all cases. When the isolated islets met the clinical criteria, they were transplanted. We utilized two methods of immunosuppression and antiinflammation. The first protocol prescribed daclizumab for induction, then sirolimus and tacrolimus to maintain immunosuppression. The second protocol used thymoglobulin for induction and tacrolimus and mycophenolate mofetil to maintain immunosuppression. Eternacept and anakinra were administered as anti-inflammatory drugs. The total amount of insulin required, HbA1c, and the SUITO index were determined to analyze and compare the results of transplantation. All isolated islet preparations (9/9) met the criteria for clinical transplantation, and they were transplanted into six type 1 diabetic patients. All patients achieved insulin independence with normal HbA1c levels; however, the first protocol required two islet infusions (N = 3) and the second protocol only required a single infusion (N = 3). The average SUITO index, at 1 month after a single-donor islet transplantation, was significantly higher in the second protocol (49.6 ± 8.3 vs. 19.3 ± 6.3, p < 0.05). Pancreatic ductal preservation, iodixanol-based purification combined with thymoglobulin induction, and blockage of IL-1β and TNF-α as well as sirolimus-free immunosuppression dramatically improved the efficacy of clinical islet transplantations. This protocol enabled us to perform successful single-donor islet transplantations. Further large-scale studies are necessary to confirm these results and clarify the mechanism of each component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.