Background: Healthcare associated infections (HCAI) and antimicrobial resistance are principal threats to the patients of intensive care units and are the major determining factors for patient outcome. They are associated with increased morbidity, mortality, excess hospitalization and financial costs. The present study is an attempt to investigate the spectrum and antimicrobial resistance of bacterial isolates involved in healthcare associated infections (HCAI) in the patients of a critical care unit at a tertiary care university hospital in Kathmandu, Nepal.
Urinary tract infections (UTI) represent the most common bacterial infections among patients visiting outpatient clinics of healthcare centers in Nepal. However, treatment of such infections is compounded by emergence and spread of multidrug-resistant uropathogens associated with extended-spectrum β-lactamases (ESBLs). In this study, we aimed to investigate the burden of antimicrobial resistance and occurrence of ESBL genes among clinical isolates of uropathogenic Escherichia coli at a tertiary care teaching hospital of Nepal. During the study period, we processed a total of 1,626 urinary tract specimens, isolated significant bacterial pathogens, and investigated their antimicrobial susceptibilities. Escherichia coli (n = 154), the predominant pathogen associated with UTI, was further investigated for the existence of ESBL enzymes by using conventional phenotypic as well as molecular approaches. Among suspected cases of UTI, we found that 15.2% were having UTI and female patients of the reproductive age group were more affected (p<0.05). Escherichia coli (154, 62.1%) was the key uropathogen, and majority (∼64.9%) of them were multidrug resistant (MDR). Among MDR E. coli isolates, 40.3% were producing extended-spectrum β-lactamases (ESBLs). bla-TEM (83.8%), bla-CTX-M (66.1%), and bla-SHV (4.8%) were common ESBL genotypes. Nitrofurantoin, gentamycin, and imipenem were the most effective antibiotics for ESBL-producing Escherichia coli isolates. It indicates that the high rates of multidrug-resistant Escherichia coli are frequent causes of UTI in our hospital. Nitrofurantoin and aminoglycosides are the most useful first-line drugs to be used in the cases of UTI. We recommend the regular investigation of drug resistance among all isolates and develop a useful antibiotic prescription policy in our country.
BackgroundInfections caused by bacteria such as multidrug resistant (MDR) Acinetobacter spp. and methicillin-resistant Staphylococcus aureus (MRSA) constitute a worldwide pandemic. Without gathering information about these strains, we cannot reduce the morbidity and mortality due to infections caused by these notorious bugs.MethodsThis study was conducted to identify the status of MDR Acinetobacter spp. and MRSA in a tertiary care centre of Nepal. Sputum, endotracheal aspirate and bronchial washing specimens were collected and processed from patients suspected of lower respiratory tract infection following standard microbiological methods recommended by the American Society for Microbiology (ASM). Double disk synergy test method was employed for the detection of extended-spectrum beta-lactamase (ESBL) in Acinetobacter isolates. Methicillin resistance in S. aureus was confirmed by using cefoxitin and oxacillin disks.ResultsDifferent genomespecies of Acinetobacter were isolated; these consisted of Acinetobacter calcoaceticus baumannii complex and A. lwoffii. Around 95% of Acinetobacter isolates were MDR, while 12.9% were ESBL-producer. Of the total 33 isolates of S. aureus, 26 (78.8%) were MDR and 14 (42.4%) were methicillin resistant.ConclusionsA large number of MDR Acinetobacter spp. and MRSA has been noted in this study. The condition is worsened by the emergence of ESBL producing Acinetobacter spp. Hence, judicious use of antimicrobials is mandatory in clinical settings. Moreover, there should be vigilant surveillance of resistant clones in laboratories.
Microbial biofilms pose great threat for patients requiring indwelling medical devices (IMDs) as it is difficult to remove them. It is, therefore, crucial to follow an appropriate method for the detection of biofilms. The present study focuses on detection of biofilm formation among the isolates from IMDs. We also aimed to explore the antibiogram of biofilm producers. This prospective analysis included 65 prosthetic samples. After isolation and identification of bacteria following standard methodology, antibiogram of the isolates were produced following Kirby-Bauer disc diffusion method. Detection of biofilms was done by tube adherence (TA), Congo red agar and tissue culture plate (TCP) methods. Out of 67 clinical isolates from IMDs, TCP detected 31 (46.3 %) biofilm producers and 36 (53.7 %) biofilm non-producers. Klebsiella pneumoniae, Pseudomonas aeruginosa and Burkholderia cepacia complex were found to be the most frequent biofilm producers. The TA method correlated well with the TCP method for biofilm detection. Higher antibiotic resistance was observed in biofilm producers than in biofilm non-producers. The most effective antibiotics for biofilm producing Gram-positive isolates were Vancomycin and Tigecycline, and that for biofilm producing Gram-negative isolates were Polymyxin-B, Colistin Sulphate and Tigecycline. Nearly 46 % of the isolates were found to be biofilm producers. The antibiotic susceptibility pattern in the present study showed Amoxicillin to be an ineffective drug for isolates from the IMDs. For the detection of biofilm production, TA method can be an economical and effective alternative to TCP method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.