Silicone rubber is widely used for electrical insulation and may be exposed to a harsh environment. The present study envisaged to improve insulation properties of silicone rubber by adding an optimised quantity of nanofillers. The fundamental space charge and charge trap characteristics were studied by adopting the pulsed electroacoustic analysis technique and through surface potential measurement. The dielectric properties of the materials were analysed through measurement of permittivity and loss factor of the material at different frequencies and temperatures. The influence of gamma irradiation on variations in fundamental properties of the material was characterised. The results of the study indicate that 5 wt.% alumina added nanocomposites had better space charge performance under gamma irradiation compared with virgin silicone rubber.
Silicone rubber insulators undergo degradation when they are exposed to corona discharges. The present study explores the surface degradation behavior of silicone rubber alumina nanocomposites due to corona ageing using highfrequency AC voltage. The electric field distribution on the sample surface during corona ageing is simulated using COMSOL. The change in silicone rubber functional group is studied using Fourier transform infrared spectroscopy (FTIR) analysis. The influence of corona ageing time on the surface roughness recovery of silicone rubber nano alumina composites is studied using an atomic force microscope (AFM). The elemental distribution behavior and change in the emission spectra persistence time are analyzed during recovery period of corona-aged silicone rubber nanocomposites using Laser-Induced Breakdown Spectroscopy (LIBS) technique. The addition of alumina nanofiller to the silicone rubber improves the resistance to ageing due to corona discharge. Loss and recovery of hydrophobic property of silicone rubber due to corona aging were determined using static contact angle measurement. The results show a direct correlation between the contact angle and the surface roughness recovery characteristics. They indicate that the nanocomposite having a 5 wt% alumina content exhibits the highest resistance to corona discharge with least surface damage. Furthermore, fast recovery was observed in the first few hours after corona ageing, and most samples eventually regained their properties after about 8 hours of recovery time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.